Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling

Keith D. Putirka a,*, Michael Perfit b, F.J. Ryerson c, Matthew G. Jackson d

a California State University, Fresno, Department of Earth and Environmental Sciences, 2576 E. San Ramon Ave., MS/ST24, Fresno, CA 93710, USA
b University of Florida, Department of Geological Sciences, Box 112120, Gainesville, FL 32611-2120, USA
c Lawrence Livermore National Laboratory, Institute of Geophysics and Planetary Physics, L-206, Livermore, CA 94550, USA
d MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, MA, 02543, USA

Accepted 22 January 2007

Abstract

Mantle temperatures provide a key test of the mantle plume hypothesis, and olivine-liquid equilibria provide perhaps the most certain means of estimating mantle temperatures. Here, we review mantle temperature estimates and olivine thermometers, and calculate a new convective geotherm for the upper mantle. The convective geotherm is determined from estimates of sub-mid-ocean ridge (MOR) mantle potential temperatures (T_p, the T the mantle would have if it rose adiabatically without melting, and provides a reference for measuring excess temperatures at volcanic hot spots; $T_{ex} = T_{p \text{ hot spot}} - T_{p \text{ MOR}}$). The Siqueiros Transform has high MgO glass compositions that have been affected only by olivine fractionation, and yields $T_{p \text{ Siqueiros}} = 1441 \pm 63 ^\circ$C. Most mid-ocean ridge basalts (MORB) have slightly higher FeO$^{\text{liq}}$ than at Siqueiros; if Fo$_{\text{max}}$ (=91.5) and Fe$^{2+}$–Mg exchange at Siqueiros apply globally, then upper mantle T_p is closer to 1466±59 °C. Since our global MORB database was not filtered for hot spots besides Iceland, Siqueiros may in fact be representative of ambient mantle, so we average these estimates to obtain $T_{p \text{ MOR}} = 1454 \pm 81 ^\circ$C; this value is used to calculate T_{ex}. Global MORB variations in FeO$^{\text{liq}}$ indicate that 95% of the sub-MORB mantle has a global T range of ±140 °C; 68% of this range (1σ) exhibits temperature variations of ±34 °C. Our estimate for $T_{p \text{ MOR}}$ defines the convective mantle geotherm; this estimate is consistent with T estimates from sea floor bathymetry, and overlaps within 1σ estimates derived from phase transitions at the 410 km and 670 km seismic discontinuities. Mantle potential temperatures at Hawaii and Samoa are identical at 1722 °C and at Iceland is 1616 °C; hence T_{ex} is ≈268 °C at Hawaii and Samoa and 162 °C at Iceland. Furthermore, T_p estimates at Hawaii and Samoa exceed maximum T_p estimates at MORs by >100 °C. Our T_{ex} estimates agree with estimates based on excess topography and dynamic models of mantle flow and melt generation. Rayleigh number calculations further show that if our values for T_{ex} extend to depths as small as 135 km, thermally driven, active upwellings will ensue. Hawaii, Samoa and Iceland thus almost assuredly result from thermally driven active upwellings, or mantle plumes. Estimates of T_{ex} account for generalized differences in H$_2$O contents between ocean islands and MORs, and are robust against variations in CO$_2$, and major element components, and thus cannot be explained away by the presence of volatiles or more fusible source materials. However, our temperature variations at MORs do not account for H$_2$O variations within the MORB source region.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Mantle plumes; Hot spots; Thermometry; Olivine; Geothermal gradient; Mid-ocean ridge

1. Overview

The recent debate over the existence of mantle plumes has to some extent strayed from a fundamental issue: Do
mid-plate volcanoes result from passive, or thermally driven active mantle upwelling? Morgan’s (1971) plume proposal has two facets: 1) hot spots are the sites of active mantle upwelling and 2) the source of excess heat for thermal plumes is at the core mantle boundary. Much recent work has focused on part 2). For example, some suggest a core contribution to lavas from Hawaii (Brandon et al., 1999; Humayun et al., 2004), and Walker (2000) and Walker et al. (2002) have proposed several mechanisms for core–mantle mass transfer; a core contribution, though, is still unclear. Some have thus questioned the existence of thermally driven plumes with much attention given to seismic velocity anomalies, which can be interpreted as maps of temperature distributions. Some interpretations suggest that certain hot spots are connected to the core (e.g., Nataf and VanDecar, 1993; Wolfe et al., 1997; Montelli et al., 2004), while others suggest that thermal anomalies are confined to the upper mantle (e.g., Humphreys et al., 2000; Foulger et al., 2000; Christiansen et al., 2002). The debate has led to the proposal that all hot spots are shallow features—unconnected to narrow hot upwellings (Anderson, 1998; Foulger and Natland, 2003). But even if the core–mantle boundary was not the site of plume nucleation, a plume model might still be viable. The key issue is whether the core contributes mass, or whether seismic low velocity anomalies are continuous from the surface to 2890 km, but rather: is there evidence that thermal anomalies exist? Thermally driven mantle plumes exist if hot spots can be shown to derive from thermally buoyant, “active” upwellings, as opposed to the passive mantle upwellings that give rise to mid-ocean ridge basalts. We suggest that the plume debate be recast to consider whether hot spots are sites of thermally driven active upwellings, and propose an observation-driven petrologic approach to identify mantle plumes.

Thermal upwellings, by definition, arise from sources with excess heat—and can be detected through estimates of “excess temperatures” from volcanic rocks. Anti-plume arguments lead to two significant implications: either (1) thermally buoyant upwelling currents do not exist or (2) such thermal currents have no impact on terrestrial volcanism. Alternative models for intra-plate volcanism include: lithospheric delamination (Foulger et al., 2005), small-scale passive mantle upwelling and lithosphere rifting (Christiansen et al., 2002), focusing of magma along lithosphere-scale cracks (Shaw and Jackson, 1973; Jackson et al., 1975), or compositional anomalies that depress the mantle solidus and promote partial melting (Bonatti, 1990; Green et al., 2001; Presnall and Gudfinnsson, 2005). In contrast to the thermal plume model, these models do not require a source of excess heat. If significant excess temperatures are not observed at “hot spots”, then the thermally driven mantle plume model is likely to be incorrect, and these alternative models must be more vigorously explored.

In the discussion of \(T \) estimates, it is useful to have a conceptual reference, which McKenzie and Bickle (1988) provide in the form of a “mantle potential temperature”, \(T_p \), \(T_p \) represents the \(T \) a parcel of mantle would have if it were to rise to a planetary surface along an adiabat without melting (Fig. 1). Mantle potential temperatures thus reflect the “convective”, as opposed to the conductive mantle geotherm. In regard to mantle melting, all parcels of mantle that have the same \(T_p \), will intersect the solidus at the same depth, provided there are no differences in mantle composition. The most direct measure of “excess heat” is through identification of \(T_{ex} \), a “mantle excess temperature.” \(T_{ex} \) is the temperature difference between the core of a mantle melting anomaly, and surrounding ambient mantle (\(T_{ex} = T_{p, hot \; spot} - T_{AMG} \); and because MORs are due to passive upwelling, \(T_{p, AMG} = T_{p, MOR} \)). The concept of \(T_{ex} \) is central to all thermal plume models, which require that (1) mantle excess temperatures provide sufficient thermal buoyancy to sustain active upwellings, and (2) that such thermal currents impinge the base of the lithosphere, and through their excess temperatures, give rise to sustained and voluminous volcanism, at random locations relative to plate boundaries. Whether the source of excess heat lies at the core–mantle boundary, the top of the lower mantle, or elsewhere, is important, but not decisive. If \(T_{ex} \) approaches zero at any particular hot spot the thermal plume model is likely incorrect at that locality, or at least not the exclusive mechanism for hot spot volcanism there. However, if \(T_{ex} \) can be shown to be significant at least at some hot spots, active upwellings, and hence plumes of some form, are likely to exist. Olivine thermometry is the most precise temperature measurement tool available to petrologists, which we apply to mid-ocean ridge basalts to delimit the sub-MOR mantle geotherm (henceforth referred to as the “average mantle geotherm” or AMG), and to Hawaii, Samoa and Iceland to test whether they derive from mantle sources with excess heat.

2. A review of some estimates of mantle temperatures

2.1. Prior \(T \) estimates of the sub-mid-ocean ridge (MOR) mantle

Alternatives to the plume model involve melting in the absence of a thermal perturbation. Opponents of the mantle plume hypothesis thus contend that \(T_{ex} (= T_{p, hot \; spot} - T_{p, ambient}) \) is small, on the order of tens of degrees C (Anderson, 1998; Foulger et al., 2005;
to several hundreds of °C with as few as 0.5–1% differences in mineralogic models (Cammarano et al., 2003). Other seismic-mineral physics-based methods of T estimation derive from attempts to match mantle seismic discontinuities with phase transitions (e.g., Jeanloz and Morris, 1986). Such strategies provide only broad temperature limits, and are clouded by uncertainty in mantle composition, and consequent effects on phase transition boundaries (see Section 6); experiments by Hirose (2002), for example, cast doubt on inflection of the 670 km seismic discontinuity as a means to detect thermal anomalies.

Thermometry based on mantle partial melting is likely much more precise. Mantle temperature estimates appear to begin with Verhoogen (1954, 1965), followed by Green and Ringwood (1967) and Verhoogen (1973). Cawthorn (1975), though, presents the first clear analysis of mantle temperatures in the context of planetary volcanism, with a suggestion of excess temperatures at hot spots. Though Cawthorn’s (1975) work predates McKenzie and Bickle’s (1988) use of T_p, Cawthorn (1975) implicitly includes this concept, and quantified reductions in temperature that accompany partial melting. McKenzie (1984) provides the next advance; using parameterizations of the mantle solidus and liquidus, McKenzie varied T_p to predict crustal thicknesses at MORs. McKenzie and Bickle (1988) refined this strategy and proposed that T_p beneath MORs was 1280 °C. This value of 1280 °C has been much utilized since 1988, and Presnall et al. (2002) have recently estimated that T_p^{MOR} is between 1260–1310 °C. However, many independent analyses of T_p^{MOR} undertaken since 1988, based on crustal thickness and new experiments and thermodynamic models of mantle melting, yield much higher values for T_p^{MOR}: 1340–1475 °C (Kinzler and Grove, 1992a; Herzberg and O’Hara, 1998; Putirka, 1999; Asimow et al., 2001; Green et al., 2001; Wang et al., 2002; Herzberg, 2004; Putirka, 2005). The value for the average potential temperature beneath MORs is thus almost certainly much greater than 1280 °C, and more likely in the range of 1450±50 °C (Wang et al., 2002; Putirka, 2005). We test this idea further, by examining the global MORB database.

2.2. Prior estimates of T_{ex} and sub-MOR T variations

McKenzie (1967) appears to be the first to recognize that MORs result from passive upwelling, and the thermal consequences that ensue. Morgan (1971) built upon that insight, proposing that hot spots reflect active thermal upwellings, i.e., “plumes”, implicitly recognizing that plumes should exhibit an excess temperature compared to MORs. Morgan (1971) also proposed that plumes
nucleate at the core–mantle boundary, though interestingly Hess (1962; his Fig. 8) appears to be the first to recognize that the core–mantle boundary may provide the thermal energy to drive active mantle upwellings; in this regard, the difference between Morgan (1971) and Hess (1962) is a matter of where upwellings impinge Earth’s surface. In any case, McKenzie (1984) provided the first estimate of T_{ex} with a vague note that $T_{ex} \approx 200$ °C, based on “numerical models of mantle convection.” Wyllie (1988) provided the first petrologic estimate of T_{ex} (at Hawaii) of ≈ 300 °C. Wyllie’s calculations assumed that melting extended into the garnet stability field at Hawaii, but not beneath MORs; it is now known, however, that MORBs derive from melting at garnet–peridotite depths (Salters and Hart, 1989; MELT Seismic Team, 1998), invalidating that approach. Klein and Langmuir (1987) examined temperature variations along the global MOR systems and found differences in sub-ridge temperatures of as much as 250 °C from an analysis of crustal thickness and melt fraction, and partial melting experiments. Their analysis included MORBs from latitude 63.85°–64.79°N on the mid-Atlantic ridge, and thus encompassed the Iceland hot spot. The Klein and Langmuir (1987) estimate of 250 °C has sometimes been misunderstood to represent the thermal variations of normal MORB mantle (Anderson, 2000), however, their 250 °C range clearly represents $T_{Iceland} - T_{coolest \text{ MORB}}$; it is thus neither an estimate of a MORB “thermal standard deviation”, nor an estimate of excess temperature, which for Iceland would be $T_{Iceland} - T^{avg \text{ MORB}}$. Shen and Forsyth (1995) and Presnall et al. (2002) obtained smaller variations for the sub-MOR mantle, on the order of 100–140 °C. Shen and Forsyth’s (1995) estimate also covered Iceland, and attempted to account for mantle heterogeneity. More recently, Asimow and Langmuir (2003) and Asimow et al. (2004) have shown how H$_2$O variations can diminish apparent thermal deviations in the sub-MOR mantle. Asimow et al. (2004), for example, showed that excess crustal thickness at the Azores can be explained by thermal anomalies that range from 75 °C for a dry mantle, down to 35 °C for a mantle that contains 700 ppm H$_2$O. Their results support, at least partly, Bonatti (1990), who suggested from his observations of abyssal peridotites, that thick crust at the Azores could be produced entirely by differences in mantle H$_2$O. Excluding calculations involving variable H$_2$O contents, most all these T estimates are based on the thickness of ocean crust, with the presumption that thick crust requires high degrees of melting, which in turn requires high temperatures. Such estimates depend upon uncertain assumptions of melt productivity during adiabatic upwelling, and the efficiency of melt extraction from the mantle. An opposing view is that thick crust indicates freezing point depression of the peridotite solidus due to the presence of volatiles (Bonatti, 1990), or the presence of more fertile mantle components (Green et al., 2001).

Albarede (1992), Herzberg and O’Hara (1998), Herzberg (2004) and Putirka (1999, 2005) have also estimated melting depths and temperatures. Their work shows that major oxide compositions are sufficiently different between MORBs and ocean-island basalts (OIBs) so as to require that at least some OIBs are derived at greater pressures and temperatures. Herzberg and O’Hara (1998) estimated excess temperatures of 100–150 °C at Iceland and 200–250 °C at Hawaii; Putirka (1999) estimated a 300 °C excess T at Hawaii (compared to the East Pacific Rise). By a similar analysis of komatiites, Herzberg (1995) further suggested that mantle excess temperatures have hovered near 200 °C since the Archean, and could have been as high as 300–400 °C for certain Archean mantle plumes. In comparison, at Iceland MacLennan et al. (2001a) obtained $T_{ex}>200$ °C using crustal thickness and melt composition, while Ito et al. (1999) estimated T_{ex} Iceland = 180 °C based on rheology related to partial

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Avg. MORB</th>
<th>Siqueiros</th>
<th>Iceland</th>
<th>Hawaii</th>
<th>Samoa</th>
<th>Kilauea-H</th>
<th>MORB-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>48.0</td>
<td>48.5</td>
<td>47.2</td>
<td>47.2</td>
<td>45.3</td>
<td>47.5</td>
<td>48.4</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>1.6</td>
<td>2.5</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>15.2</td>
<td>15.9</td>
<td>12.3</td>
<td>9.0</td>
<td>9.2</td>
<td>9.7</td>
<td>16.3</td>
</tr>
<tr>
<td>FeOtb</td>
<td>8.4</td>
<td>8.0</td>
<td>9.3</td>
<td>11.6</td>
<td>12.0</td>
<td>11.4</td>
<td>7.9</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>14.6</td>
<td>13.2</td>
<td>18.2</td>
<td>21.4</td>
<td>20.5</td>
<td>19.2</td>
<td>12.9</td>
</tr>
<tr>
<td>CaO</td>
<td>10.6</td>
<td>11.1</td>
<td>10.5</td>
<td>7.3</td>
<td>8.0</td>
<td>8.0</td>
<td>11.3</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>2.2</td>
<td>2.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

a Compositions Kilauea-H and MORB-H are “representative primary magma” compositions from Herzberg (pers. comm.), for comparison. All other compositions are from this study; see Appendix A for calculation procedures.

b FeOt is FeO total, see Appendix A.
Fig. 2. The olivine binary phase diagram, (a) is compared to the Roeder and Emslie (1970) olivine thermometer for natural basaltic liquids. In the olivine binary (a), there is a monotonic relationship between temperature and the Fo content of olivine. Solid lines connect the equilibrium olivine-liquid pair $X_{1,liq}^L$ and $X_{1,ol}^o$, which equilibrate at T_1. For any olivine with greater Fo content, such as $X_{2,ol}^o$, it will equilibrate with a liquid with higher MgO content, $X_{2,liq}^L$, at a higher T, T_2 (connected by dashed lines). But natural liquids do not have an olivine stoichiometry, and the monotonic relationship between Fo and T does not apply. (b) Shows the graphical olivine-liquid thermometer of Roeder and Emslie (1970) (their Fig. 7). The near-horizontal lines are isotherms, shown in °C, and calculated from Eq. (1), and models A and B from Putirka (2005). Lines that radiate from the origin are lines of constant Fo content, as determined by the Fe–Mg exchange coefficient, $K_{D,Fe-Mg}^{ol-liq} = (X_{Mg,liq} X_{Fe,ol})/(X_{Mg,ol} X_{Fe,liq})$, which is 0.32 in (b). If both $X_{Fe,liq}^L$ and $X_{Mg,liq}^L$ are known, the intersection of those compositions will yield the temperature at which olivine will become saturated (from the isotherms), and the composition of that olivine (from the radiating lines of constant Fo). But one need not use $X_{Mg,liq}^L$ as input, and the effect of $X_{Fe,liq}^L$ is very important: Notice that if a liquid is known to have $X_{Fe,liq}^L = 0.4$, and it is known to have equilibrated with an olivine of Fo 70, the equilibration T would be ≈ 1840 °C; in contrast, if a different liquid has $X_{Fe,liq}^L = 0.2$, and is known to have equilibrated with an olivine of Fo 80, the equilibration T would be much lower, ≈ 1630 °C, even the though the Fo content of the equilibrated olivine is greater. It should also be noted that in the latter technique, $X_{Mg,liq}^L$ for the liquid can be retrieved when FeOliq and Fo are known.
melting. Though temperatures were not quantified, Fram and Lesher’s (1997) analysis of melting depths related to the Iceland melting anomaly implies comparable temperature differences. More recently, Putirka (2005) used olivine thermometry to calculate $T_{cx} \approx 220$ °C at Hawaii and ≈ 170 °C at Iceland.
Petrologic estimates of T_{ex} are consistent with temperatures inferred from “excess topography”, i.e., the shallow bathymetry and uplift exhibited at oceanic hot spots. For instance, although Sleep (1990) admitted that excess temperatures are “not tightly constrained by geophysical considerations”, he applied $T_{\text{ex}}=200 \, ^\circ\text{C}$ at Hawaii and Iceland to explain their topographic expressions. Similarly, Schilling (1991) calculated excess...
temperatures for 13 different hot spots, that range from 160 °C (Tristan) to 280 °C (Circe), and Watson and McKenzie (1991) used a combination of excess topography, geoid height and melt productivity, to derive a T_{ex} at Hawaii of 278 °C. Ribe and Christensen (1999) expanded upon the Watson and McKenzie approach to arrive at $T_{ex} \approx 160$ °C at Hawaii.

2.3. Some contrasting viewpoints and maximum temperatures

The weight of dynamic and petrologic T estimates indicates that the highest mantle temperatures are at hot spots, with values of T_{ex} between 160–300 °C. However, except for Putirka (2005), and Albarede (1992), errors are not well quantified. In addition, Green et al. (2001) present a serious challenge to this tide of work. They observe that maximum forsterite contents (Mg$_2$SiO$_4$; Fo= Mg$^+$/Mg$_{Mg}$=X$^+$$_{Mg}$/X$^+$$_{Mg} + X^+_{Fe}$), where X^+_i are cation fractions of i in phase z) of olivine phenocrysts at MORs match or exceed those found at Hawaii, and conclude that $T_p \approx 1430$ °C, at both Hawaii and at MORs. Their strategy of examining Fomax is significant. It is well established that temperatures decrease dramatically along liquid lines of descent (O'Hara, 1978), and that any viable model for generation of a primitive liquid requires equilibration of that liquid with mantle olivine (O'Hara, 1968, 1970). R.N. Thompson (1978) was perhaps the first to recognize that olivine phenocrysts in MORB range to Fo91, and that temperature estimates that implicate lower Fo contents likely underestimate mantle temperatures. Green et al.’s (2001) use of Fomax for MORB phenocrysts is thus a valid attempt to measure the maximum temperatures in the sub-MOR mantle. Anderson (2000) also provides a challenge to the plume model. He argues that 1) there are no thermally undisturbed regions of the upper mantle (isotherms in the uppermost mantle are unlikely to be flat), 2) horizontal temperature variations exceed 200 °C at shallow depths, and 3) absolute temperatures encompass estimates of plume temperatures. In this view, T_{ex}’s as great as 200–250 °C do not require a source of excess heat at depth; though there are problems with the Anderson (2000) analysis (see Section 4.), we must understand sub-ridge temperature variations to estimate T_{ex}.

To address these issues we test new and published olivine-liquid thermometers, and examine global variations in FeOliq among MORBs to assess the mean and standard deviation of sub-MOR temperatures. These results lead to our proposal for a new convective geotherm, which we compare to other appraisals of upper mantle temperatures. We then calculate T_{ex} at Hawaii, Samoa and Iceland.

3. Olivine thermometry

Because primitive oceanic basalts equilibrate with olivine in their source region (O’Hara, 1968), mantle temperatures can be estimated from olivine-liquid equilibria, provided that one can reconstruct coexisting primitive liquid and olivine compositions. Olivine thermometry provides a test that is independent of temperature estimates that derive from crustal thickness and has greater precision. To estimate temperatures we require 1) the FeOliq (literally, Fe as Fe$^{2+}$) of mantle-equilibrated liquids, or an FeO–MgO trend-line along which liquids are olivine saturated (see Appendix A, for calculations regarding FeO), 2) the Fomax of olivines that equilibrate with parental liquid compositions, 3) the value for the Fe–Mg exchange coefficient between olivine and liquid, K_D(Fe–Mg)$^{ol-liq}$, and estimates of 4) the pressure (P) of olivine-liquid equilibration, and 5) fO_2 conditions. Temperature can be calculated from these five variables alone, if one applies the composition independent thermometers of Putirka (2005). To estimate T more precisely we estimate MgOliq for parental liquids (using FeOliq, K_D(Fe–Mg)$^{ol-liq}$ and Fomax as input; see Appendix A) and then reconstruct the SiO$_2^{liq}$ and Na$_2$Oliq+K$_2$Oliq for parental liquids to use as input into geothermometers (Table 1).

It is well established that $D_{Mg}^{ol-liq}=f(T)$ and that coexisting olivine-liquid pairs that exhibit low $D_{Mg}^{ol-liq}(=X_{Mg}^{ol}/X_{Mg}^{liq})$, where X_{Mg} is the cation fraction of Mg in olivine or liquid) have high melting temperatures (e.g., Roeder and Emslie, 1970; Sugawara, 2000; Putirka, 2005). The olivine binary phase diagram (Fig. 2a) shows that high Fo contents require equilibrium with liquids that have high Mg# ($Mg^{#}_{liq}=X_{Mg}^{liq}/(X_{Mg}^{liq}+X_{Fe}^{liq})$, with Fe as Fe$^{2+}$). In the olivine binary, there is a monotonic relationship between Fo content and T (and Mg#) (Fig. 2). In natural silicate liquids, though, Fe and Mg can vary independently, and the monotonic relationship between T and Fo content no longer applies. The Mg# of a liquid will still dictate the Mg# (i.e., Fo content) of a coexisting olivine, depending upon the value of the Fe$^{2+}$–Mg exchange coefficient, K_D(Fe–Mg)$^{ol-liq}=(X_{Mg}^{liq}X_{Fe}^{ol})/(X_{Mg}^{liq}+X_{Fe}^{ol})$, (Roeder and Emslie, 1970; Herzberg and O’Hara, 1998; Toplis, 2005). But if a liquid has low Fe$^{2+}$, then even at a high Mg#, it will have low MgOliq, and hence high D_{Mg}^{ol-liq}, and olivine-liquid equilibration will occur at low T. Similarly, if a liquid has high Fe$^{2+}$, then high
Mg# implies high MgO$_{\text{liq}}$, and therefore low $D_{\text{Mg}}^{\text{ol/liq}}$, and high equilibration T. This insight is not new, and is implicit in the Roeder and Emslie (1970) olivine thermometer (Fig. 2b; their Fig. 7).

3.1. Thermodynamic basis for olivine thermometry

Since most basalts have had their MgO contents affected by olivine fractionation, primitive MgO$_{\text{liq}}$ contents are commonly estimated by determining the MgO content of a liquid that would be in equilibrium with a high Fo (mantle) olivine, usually taken as Fo90–92 (Albarede, 1992; Kelemen et al., 1997; Green et al., 2001). The quantity $D_{\text{Mg}}^{\text{ol/liq}}$ is then calculated by pairing the model primitive liquid with the assumed olivine composition and T is calculated from $D_{\text{Mg}}^{\text{ol/liq}} = f(T)$. Estimates of MgO$_{\text{liq}}$ provide the principal sources of error. However, since FeO$_{\text{liq}}$ remains nearly constant during olivine fractionation (Langmuir and Hanson, 1980; Klein and Langmuir, 1987; Putirka, 2005), an alternative strategy is to use FeO$_{\text{liq}}$ (as derived from so called olivine control lines (Powers, 1955), where olivine addition/removal controls whole rock composition) for T estimation, and MgO$_{\text{liq}}$ becomes output, rather than input (Appendix A).
The Roeder and Emslie (1970) approach to olivine thermometry provides an elegant graphical means to assess error, and supports the use of different input (Putirka, 2005). In this approach, temperatures are calculated using the following expression:

$$\ln D_{\text{Mg}}^{\text{liq}} = -2.158 + 55.09 \frac{P(\text{GPa})}{T(\text{°C})} - 6.213 \times 10^{-2} [\text{H}_2\text{O}^{\text{liq}}] + 4430 \frac{1}{T(\text{°C})} + 5.115 \times 10^{-2} [\text{Na}_2\text{O}^{\text{liq}} + \text{K}_2\text{O}^{\text{liq}}]$$

In Eq. (1), $X_{\text{Mg}}^{\text{liq}}$ and $X_{\text{Fe}}^{\text{liq}}$ are the cation fractions of Mg and Fe$^{2+}$ in the liquid and $D_{\text{Mg}}^{\text{liq}}$ and $D_{\text{Fe}}^{\text{liq}}$ are the respective partition coefficients, $X_{\text{Mg}}^{\text{ol}}/X_{\text{Mg}}^{\text{liq}}$ and $X_{\text{Fe}}^{\text{ol}}/X_{\text{Fe}}^{\text{liq}}$. Temperature sensitive expressions for $D_{\text{Mg}}^{\text{liq}}$ and $D_{\text{Fe}}^{\text{liq}}$ (Eqs. (2) and (3) below) are substituted into Eq. (1), and T is varied until the sum of the expression yields the cation fraction of Mg+Fe in olivine ([(Mg,Fe)$_2$SiO$_4$], i.e., 2/3 (see Langmuir and Hanson, 1981; Putirka, 2005).

Putirka (2005) calibrated P-independent olivine-liquid equilibria to show that high FeO$^{\text{liq}}$ at Hawaii and Iceland require higher equilibration temperatures compared to MORs (220 °C and 170 °C respectively), even though Fo$_{\text{max}}$ is similar at MORs, Iceland and Hawaii. To refine these estimates, new P-sensitive $D_{\text{Ol}}^{\text{liq}}$ is calibrated and tested using 993 experimental observations of olivine-liquid equilibrium. Eqs. (2)–(5) were calibrated using 137 experimental data (selected from Falloon and Green, 1987; Falloon et al., 1988; Trönnes et al., 1992; Sisson and Grove, 1993a, b; Yang et al., 1996; Grove et al., 1997; Parman et al., 1997; Kogiso et al., 1998; Walter, 1998; Montierth et al., 2000; Falloon et al., 2001; Gudfinnsson and Presnall, 2000; Longhi, 2002). The remaining 856 experimental data (Fig. 3) were used for test purposes; the test data encompass the pressure range 0.0001–15.5 GPa and the temperature range 965–2080 °C. Each independent variable has a high F-ratio and was tested using leverage plots to ensure significance:

$$\ln D_{\text{Mg}}^{\text{ol/liq}} = -2.158 + 55.09 \frac{P(\text{GPa})}{T(\text{°C})} - 6.213 \times 10^{-2} [\text{H}_2\text{O}^{\text{liq}}] + 4430 \frac{1}{T(\text{°C})} + 5.115 \times 10^{-2} [\text{Na}_2\text{O}^{\text{liq}} + \text{K}_2\text{O}^{\text{liq}}]$$

$$\ln D_{\text{Fe}}^{\text{ol/liq}} = -3.300 + 47.57 \frac{P(\text{GPa})}{T(\text{°C})} - 5.192 \times 10^{-2} [\text{H}_2\text{O}^{\text{liq}}] + 3344 \frac{1}{T(\text{°C})} + 5.595 \times 10^{-2} [\text{Na}_2\text{O}^{\text{liq}} + \text{K}_2\text{O}^{\text{liq}}]$$

$$+ 1.633 \times 10^{-2} [\text{SiO}_2^{\text{liq}}]$$
In Eqs. (2) and (3), T is in °C and P in GPa; terms such as $\text{SiO}_2^{\text{liq}}$ refer to the weight % of the indicated oxide in the liquid phase, while $D_{\text{Mg}}^{\text{ol-liq}}$ refers to the cation fraction ratio of Mg between olivine and liquid. For test data, we make use of post-1987 1 atm data, because of the development of techniques to minimize alkali loss in open furnace systems (e.g. Tormey et al., 1987).

As we will show, the Beattie (1993) thermometer is remarkably accurate, and so we re-calibrate his Eq. (10), adding a term for water, and additional, thermodynamically derived terms (Putirka, 1998, Eq. (7)) for P:

$$T(°C) = \frac{15294.6 + 1318.8P(\text{GPa}) + 2.4834P'(\text{GPa})^2}{8.048 + 2.8532\ln D_{\text{Mg}}^{\text{ol-liq}} + 2.097\ln[1.5(C_{\text{Si}}^{\text{NM}})^{-1}] + 2.575\ln[3(C_{\text{SiO}}^{\text{liq}})^{-1}] - 1.41NF + 0.222\text{H}_2\text{O} + 0.5P(\text{GPa})}$$

(4)

$$T(°C) = \frac{461.29 + 84.9P(\text{GPa}) + 0.588P'(\text{GPa})^2}{0.355 + 0.06986\ln D_{\text{Fe}}^{\text{ol-liq}} - 0.00435\ln[1.5(C_{\text{Fe}}^{\text{N}})^{-1}] - 0.0523\ln[3(C_{\text{SiO}}^{\text{liq}})^{-1}] - 0.0217NF + 0.000893\text{H}_2\text{O} + 0.04P(\text{GPa})}$$

(5)

Because calibration of Eqs. (4) and (5) involves non-linear regression methods, F-tests are not possible and the coefficients derive from regression of all 993 experimental data. We apply the activity models of Beattie (1993), but for simplicity, H_2O is expressed in wt.%. In these expressions, $C_{\text{Si}}^{\text{NM}} = X_{\text{Si}}^{\text{liq}} - X_{\text{Fe}}^{\text{liq}} + X_{\text{Fe}}^{\text{liq}} + X_{\text{Mg}}^{\text{liq}} + X_{\text{Si}}^{\text{liq}}$; $C_{\text{SiO}}^{\text{liq}} = X_{\text{Si}}^{\text{liq}} + X_{\text{Si}}^{\text{liq}}$; $NF = 7/2\ln(1 - X_{\text{Al}}^{\text{liq}}) + 7\ln(1 - X_{\text{Ti}}^{\text{liq}})$, where $X_{\text{i}}^{\text{liq}}$ is the cation fraction of element i in the liquid phase (see Beattie, 1993).

We use these equations with estimates of Fo_{max}, the maximum Fo content of olivines with which parental liquids (Table 1) may have equilibrated. We cannot demonstrate that primitive liquids have not equilibrated with olivines with higher Fo contents, but below we show (Section 4) that values of $\text{Fo}_{\text{max}} \approx 91.5$ are generally consistent with an approach to mantle values. If nothing else, our temperatures are minimum estimates. Herzberg and O’Hara (2002) have suggested that fractional melting may pose difficulties with the interpretation of high Fo olivines. But we emphasize that fractional melting still implies equilibrium; provided an equilibrium FeO^{liq} can be identified, it matters little whether melts were whisked away by a batch or fractional process. A more serious concern is whether any particular olivine composition has had its composition set by sub-solidus equilibration.

3.2. Tests of new and existing models

Fig. 3 illustrates tests of a number of published olivine-liquid thermometers that utilize $X_{\text{Mg}}^{\text{ol}}$ and $X_{\text{Mg}}^{\text{liq}}$ as input (Ford et al., 1983; Langmuir et al., 1992; Ariskin et al., 1993; Beattie, 1993; Sugawara, 2000; Gudmundsson and Presnall, 2001; Putirka, 2005). For dry conditions at low T, the model of Beattie (1993) (using the pressure correction of Herzberg and O’Hara (2002)), is clearly the most accurate of any published model, but comparison of one-to-one correlation lines, and slopes and intercepts of regression lines through $T(°C)$ calculated vs. $T(°C)$ measured shows that Eqs. (2) and (4) exhibit the least error. When water contents are low, however, it would not be unwarranted to average T estimates from Eqs. (2)–(4) and Beattie (1993).

In contrast to the use of $D_{\text{Mg}}^{\text{ol-liq}}$ alone, isotherms in the Roeder and Emslie (1970)-type diagram are calculated using Eq. (1), and equations such as $D_{\text{Mg}}^{\text{ol-liq}} = f(T)$ and $D_{\text{Fe}}^{\text{ol-liq}} = f(T)$ simultaneously (see Langmuir and Hanson, 1981; Putirka, 2005). This approach does not necessarily require $X_{\text{Mg}}^{\text{ol}}$ as input. We test the precision with which such isotherms can be calculated, using Eqs. (2)–(5), Putirka (2005), Ford et al. (1983) and the Beattie (1993) (as throughout this paper, using the Herzberg and O’Hara (2002) pressure correction) models (Fig. 4). As might be expected, models that exhibit systematic error in their individual $D’s$ (Fig. 3), retain their systematic error (Fig. 4), as is evident in the F-ratios, and slope and intercept values (Fig. 4); Eqs. (2)–(5) nearly eliminate this systematic error.

In Appendix A, we compare T estimates for model MORB, Iceland, Samoa and Hawaiian parental liquid compositions, as calculated by us (Table 1; see Appendix A) and by Herzberg (pers. comm.). These tests (Table A1) show that, provided one is consistent about the choice of input parameters, T estimates from various models differ by as little as 27 °C (for MORB), with standard deviations that are within 1σ model error. The large differences between our mantle potential temperatures, and T estimates of, say, Falloon et al. (this volume), depend as much or more upon the derived or implicit bulk compositions and olivine Fo contents (Fig. 5; see Appendices A and B). In some cases, though, temperature estimates diverge by more than 100 °C for equivalent input (Table A2), in which case predicted values for Fo and $K_{10}(\text{Fe-Mg})^{\text{ol-liq}}$ may be used to decide which thermometers yield the best estimates (Appendix A).
4. Ambient mantle temperatures

As noted, Anderson (2000) presents an interesting challenge to the mantle plume model, proposing that the apparent sites of “excess heat” (e.g., Hawaii, Iceland) reflect temperature variations in the uppermost mantle rather than from deeper thermal inputs. The source of Anderson’s (2000) proposed 200 °C+ thermal variance is unfortunately vague. Some studies cited by Anderson (2000) estimate T variations that can in fact be viewed as supportive of the plume model (e.g., Klein and Langmuir, 1987; Schilling, 1991; see Section 2.2). In addition, seismically detected long-wavelength T variations are not only thermally imprecise, but are unlikely to capture hot narrow upwellings. It is also unclear to what extent the seismic long-wavelength T estimates cited by Anderson (2000) were filtered for the effects of cold subducted slabs, or lithosphere roots, whose thermal structures are irrelevant to the temperature ranges that drive intra-plume volcanism. However, Anderson (2000) raises a fundamental question: is the variation of temperatures beneath MORs so great as to encompass intra-plume estimates of T_{eq}? If MORB derive from regions of the mantle with greater than 200 °C variations in T, especially in the absence of a hot spot influence, then excess temperatures of a similar magnitude at midplate settings need not be interpreted as deep-seated thermal plumes. A quantitative estimate of the range of sub-MOR mantle temperatures is thus required.

Mid-ocean ridge basalts result from passive mantle upwelling (see McKenzie and Bickle (1988) for a summary of the decisive arguments), and thus provide a global sampling of the upper mantle, absent the influence of putative mantle plumes. To measure the mean, range and standard deviation of upper mantle temperatures, we use a global database of 22,591 MORBs and 2,845 MORB-derived olivines (PETDB: http://www.petdb.org/), including samples from the Siqueiros Transform (Perfit et al., 1996). The Siqueiros samples are important because Siqueiros is the only MOR location where liquids can be traced to an olivine-only fractionation line (“olivine control”). These data allow a direct estimate of primitive FeO$^{\text{liq}}$ contents, and the olivines that coexisted with such liquids (Fig. 6a). The global MORB database is used to examine the global range in FeO$^{\text{liq}}$ (Fig. 7), which reflects the T range in the sub-MOR mantle; though Iceland proper is excluded from this MORB data set, there is no additional filtering of this database for the effects of hot spot-influenced ridge segments.

4.1. FeO in primitive MORB liquids

For consistency, we first convert all analyses of Fe to FeO total (FeO; see Appendix A), and calculate FeO (Fe as Fe$^{2+}$) assuming the fO_2 conditions of Bezos and Humler (2005) and by use of the models of Kress and Carmichael (1988) (see Appendix A). Where we note FeO or FeO$^{\text{liq}}$ (as opposed to FeOt) we always mean Fe$^{2+}$O, and all temperatures that require Fe as input use FeO$^{\text{liq}}$. An inflection in the global MORB database, at approximately 9.5 wt.% MgO, shows the transition from “olivine control” (fractionation of olivine alone) at high MgO, to the co-precipitation of olivine and plagioclase (lower MgO), at least for high Fe primitive liquids. An orthogonal regression line is shown for MORB with MgO < 9.5 wt.%, that describes the olivine+plagioclase fractionation trend. The horizontal lines at 7 and 9.6 wt.% FeO$^{\text{liq}}$ represent the upper and lower limits for primitive FeO$^{\text{liq}}$ in MORB that can generate 95% of MORB compositions through olivine fractionation, followed by olivine+plagioclase fractionation at MgO ≤ 9.5 wt.%. Provided that primitive MORB equilibrate with olivine, these upper and lower bounds on FeO$^{\text{liq}}$ must reflect variations in T for the sub-MOR mantle, even if the mantle is heterogeneous with respect to Fe (Shen and Forsyth, 1995); olivine-liquid thermometers, though, by their calibration, account for such variations, and so are independent of the composition of the mantle source (only estimates of melt fraction, F, depend upon a model for mantle composition; Appendix A).

4.2. Maximum Fo in MORB olivines

To estimate temperature, we must estimate the value for the maximum Fo content of olivines equilibrated with MORB. To estimate Fo$_{\text{max}}$ for MORBs we compare Fo and CaO contents of olivines from the ocean basins (Fig. 8a). We include data from abyssal hills, seamounts, fossil spreading ridges, transform fault zones, as well as spreading ridges; the data are filtered so that divalent cation sums in olivine, calculated on a 4-oxygen basis, are between 2.99–3.01. Olivines from ultramafic rocks can be discerned from phenocryst olivines in that their CaO contents are much lower (<0.17 wt.%) than those of phenocrysts in lavas (Norman and Garcia, 1999). Low CaO is accompanied by high NiO, and undoubtedly reflects depletion of a solid residue in CaO due to melt removal. Phenocryst Fo$_{\text{max}}$ values also overlap with Fo contents from ultramafic olivines. We cannot exclude the possibility that ultramafic olivines have re-equilibrated at subsolidus conditions, but the cluster of ultramafic
olivines in Fig. 8a has a mean and maximum for Fo of 90.2 and 91.6 respectively, which overlaps with the maximum values obtained from phenocrysts. This overlap occurs in the range that has been inferred to represent mantle olivine compositions (Fo90–92; Albarede, 1992), and indicates that phenocryst Fo$_{\text{max}}$ values in all likelihood approach mantle-equilibrated compositions. For temperature estimation, we use Fo = 91.5, as this value appears representative of Fo$_{\text{max}}$ for global MORB. One caveat regarding PETDB MORB olivines is required: 81% (21) of all olivines with Fo \geq 91 and 100% (6) with Fo \geq 91.5 derive from a single study (Eissen, 1982), which comprises 19% (555) of the database. If the Eissen (1982) data are excluded, Fo$_{\text{max}}$ of the remaining 2290 olivines is 91.3. The Eissen (1982) subset is thus suspected to have some analytical bias. It should be noted that olivines with Fo \approx 91.9 do not derive from samples with the highest FeO, and hence maximum MOR temperature estimates are unaffected. Fig. 8 suggests that Fo$_{\text{max}}$ is unlikely to range much higher than 91.6 for most MORBs.

Interestingly, our results (below) suggest an explanation for the non-Gaussian distribution of olivine phenocrysts, i.e., the sharp drop in numbers of phenocrysts at high Fo (Fig. 8b). We propose that the mantle geotherm, perhaps aided by a mantle that is approximately homogenous in its major element content, provides a natural upper limit to olivine Fo contents during partial melting.

4.3. Ambient mantle temperature estimates

Fig. 9a shows olivine-equilibration and mantle potential temperatures for Siqueiros and global MORB (Fig. 7). K_D(Fe–Mg)$_{\text{ol-liq}}$ is calculated to be 0.31 (see Appendix A). At Siqueiros, we derive an olivine-liquid equilibration temperature of 1380 °C at 0.8 GPa; the mean FeO for MORB is greater than at Siqueiros, and so at 0.8 GPa yields an olivine-equilibration temperature of 1405 °C. Our method of temperature estimation implies a value for parental MORB MgO$_{\text{liq}}$; a complete reconstruction for a MORB parental liquid is given in Table 1 (see Appendix A).

We convert these temperatures to mantle potential temperatures, T_p (Fig. 1; Appendix A). To calculate $T_{\text{ol-liq}}$ and T_p, we assume a depth of equilibration of 0.8 GPa, which is at the shallow end of the range of partial melting depths estimated by Kinzler and Grove (1992b) and somewhat more shallower than the 1.15 GPa used for the T_p calculation by Putirka (2005). In regard to T_p, the global MORB FeOt range (7 wt.% \leq FeOt \leq 9.6 wt.%) translates to a range in T_p of 140 °C (excluding Iceland). Siqueiros
Do not hallucinate.

Samples lie near the middle of this range with $T_p = 1441 \, ^\circ C$, but just below the T_p derived using global mean MORB FeO, which yields $T_p = 1466 \, ^\circ C$. The Siqueiros and mean MORB values represent the average of two T_p values computed using two different estimates for melt fraction, F (Fig. 9). Our preferred estimate for the average mantle geotherm is the arithmetic average of T_p derived at Siqueiros, and that derived using mean FeOliq from PETDB MORB: error analysis yields: $T_p^{MORB} = 1454 \pm 78 \, ^\circ C$, presuming F_{\max} at Siqueiros is valid globally. We use 1454 °C to calculate mantle excess temperatures at hot spots relative to MORs.

To estimate the standard deviation of potential temperatures beneath MORs, we consider the 1σ value for MORB FeO contents, which is ±0.57 wt.% (computed for all MORB with 7 wt.% ≤ FeO ≤ 9.6 wt.%). The 1σ FeO variation about the mean MORB FeO (Fig. 9b) translates to a 1σ variation in T in the sub-MOR mantle of ±30 °C (Fig. 9b), or ±34 °C, if an uncertainty of ±0.04 on F_{\max} is included (a ±0.04 uncertainty in F_{\max} translates to a ±15 °C uncertainty in T). These observations indicate that a rather narrow range of temperatures characterizes the sub-MOR mantle. Our T estimates do not account for variations in H$_2$O beneath various MOR segments. Recent work that accounts for H$_2$O variations at the Azores (Asimow et al., 2004) suggests that the sub-MOR temperature range may be further diminished. As a “null hypothesis”, we chose not to filter the global MORB database for hot spot effects (other than excluding Iceland). Siqueiros may indeed be more representative of mean MORB temperatures, if, as we show for Iceland, Samoa and Hawaii, that near-ridge hot spots are indeed hot. In addition, if the observed value for $K_{D}(Fe-Mg)^{ol-liq}$ of 0.29 at Siqueiros is valid (Fig. 6), and applies globally, then T_p for MORB (see below) is lower by 25 °C.

4.4. Sources of error: melt fraction (F) and pressure (P)

The above-noted mantle potential temperatures depend upon estimates of F and P (see Fig. 1, caption and Appendix A). Estimates of F are very uncertain (see Appendix A), and so estimates of T_p are much less accurate than estimates of olivine-liquid equilibration reported in Fig. 9 and Table 2. To estimate F we interpolate between experiments performed on peridotite bulk compositions (see Appendix A for details); an uncertainty in F of ±5% translates to a thermal uncertainty of ±33 °C. Pressure estimates also enter into the calculation of T_p, since $F = f(P)$, and also because of a correction for adiabatic upwelling (Fig. 1).
However, the P assumed for olivine equilibration has little effect on estimates of T_p (Table 2). For example, though as P is increased, olivine equilibration temperatures ($T_{\text{ol-liq}}$) increase, potential corresponding increases in T_p are offset because as P increases, 1) smaller values of F are needed to generate high MgO liquids, and so the upward correction for the heat of fusion (Fig. 1) is less, and 2) there is a greater drop in T due to greater upwelling along the mantle adiabat (Fig. 1). Table 2 compares calculations of T_p for equilibration at 1 atm–5 GPa and shows that error resulting from an assumption of P (mean error is ±12 °C) is nearly negligible compared to other sources of error, such as assumed values for F, or $K_D(\text{Fe–Mg})^{\text{ol-liq}}$.

5. Mantle excess temperatures at Hawaii, Iceland and Samoa

5.1. Methods

Putirka (2005) provided an updated version of the Roeder and Emslie (1970) thermometer to show, in
response to Green et al. (2001), that high FeO$_{liq}$ at Hawaii and Iceland requires greater values for T_p at these localities compared to MOR’s, despite similar values for $F_{o_{max}}$. The Putirka (2005) models were calibrated to test the effects of H$_2$O and CO$_2$ on calculations of T_{ex}. By applying similar fO$_2$ conditions and K_D(Fe–Mg)$_{ol-liq}$, Hawaii still has a considerable excess T_{of} of 168 °C. We re-calculate T_p at Hawaii and Iceland, and introduce new calculations for Samoa, using Eqs. (2) and (3), and K_D(Fe–Mg)$_{ol-liq}$=0.34 (Fig. 6b) at Hawaii and Samoa, and
0.32 at Iceland (see Appendix A). Values for \(K_D(\text{Fe–Mg})^\text{ol-liq} \) at Hawaii are in part based on the observation that mean whole rock-olivine compositions are consistent with \(K_D(\text{Fe–Mg})^\text{ol-liq} = 0.34 \) (Fig. 6b); to presume a lower value for \(K_D(\text{Fe–Mg})^\text{ol-liq} \) introduces a mass balance problem that can be solved only if high density olivine-rich slurrres are somehow preferentially erupted over their lower density, more highly fractionated counterparts (Fig. 6b). This argument is similar to that posed by Wright (1973) when he estimated that the minimum MgO content of Hawaiian parental magmas as 15.5 wt.%. A perhaps under-appreciated fact is that parental liquids must represent the sum of all erupted and non-erupted liquid and crystalline products, and if dense olivine slurries are preferentially left behind in a conduit, erupted products yield minimum estimates for parental MgO.

For consistency, we use the mean \(K_D(\text{Fe–Mg})^\text{ol-liq} \) derived from the models of Herzberg and O’Hara (2002), Toplis (2005), and Putirka (2005) to all localities (including MORB; see Appendix A), which at Hawaii matches the observed value. We also presume equilibration at 3 GPa, or near the base of the lithosphere for Hawaii and Samoa, and 2.3 GPa, at Iceland. As noted for MORB, though, \(T_p \) estimates are nearly independent of the assumed \(P \) of olivine-liquid equilibration (Table 2). In any case, high \(P \), and elevated values for \(K_D(\text{Fe–Mg})^\text{ol-liq} \) (due to high \(P–T \); e.g., Herzberg and O’Hara, 1998) at hot spots overlying thick lithosphere are probably the most realistic. Studies show that clinopyroxenes can be transported from well below the base of the crust (e.g., Putirka, 1997; MacLennan et al., 2001b, Klügel and Klein, 2006). High Fo olivines, which by any method yield higher temperatures than clinopyroxenes, are thus almost certainly mantle-derived, probably from greater depths than the greatest depths inferred for clinopyroxenes.

At Hawaii, we use data from the Hawaii Scientific Drilling Project (HSDP) and from Norman and Garcia (1999). At Iceland we use data from MacLennan et al. (2001a) and the GEOROC database. At Samoa we use data from the GEOROC database and new analyses of picritic samples. To calculate FeO, we apply the \(fO_2 \) conditions of Rhodes and Vollinger (2005) for Hawaii and presume that the same conditions characterize Samoa (FeO=0.92[FeOt] on a weight % basis) and at Iceland (and MORB) we apply the \(fO_2 \) conditions of Bezos and Humler (2005) (FeO=0.88[FeOt]). Finally, we calculate \(Fe^{3+}/Fe^{2+} \) ratios using the model of Kress and Carmichael (1988) (see Appendix A for details).

5.2. Temperatures at Hawaii, Iceland and Samoa

Olivine equilibration temperatures at 3 GPa at Mauna Loa, Hawaii and at Samoa are 1620 °C and 1625 °C respectively. At Iceland, olivine equilibration at 2.3 GPa is 1520 °C (Fig. 9). Our method implies a value for the MgO content of parental magmas at each locality, which can be used to estimate a parental magma composition (Table 1), as well as melt fraction and a mantle potential temperature (see Appendix A). Our calculated mantle potential temperatures are insensitive to \(P \) (Table 2), but sensitive to very uncertain estimates of \(F \). Mantle potential temperatures at Hawaii and Samoa are estimated to both be 1722 °C, while at Iceland our estimate is 1616 °C. These estimates exceed MOR maximum \(T_p \) values by 105–211 °C and imply mantle excess temperatures, \(T_{ex} \), of 268 °C at Hawaii and Samoa, and 162 °C at Iceland. These temperatures rise so far above average and maximum values for \(T_p^{MOR} \) that volcanism at Iceland, Samoa and Hawaii appear almost certain to derive from thermally driven mantle plumes. These conclusions account for variations in water contents between MOR and hot spot sources, and are robust against variations in CO\(_2\) and other major mantle components, and, except for estimates of \(F \), are independent of any assumed composition for their mantle sources (see Putirka, 2005; Appendix A).

Opponents to the plume hypothesis might still posit that \(fO_2 \) variations might account for the apparent thermal differences. But oxidation states of one log unit above the quartz–fayalite–magnetite buffer (QFM+1) would be required to explain the proposed model of Mauna Loa compositions by Green et al. (2001) in the case that \(K_D(\text{Fe–Mg})=0.30 \); even higher oxidation states are required in the more likely case that \(K_D(\text{Fe–Mg}) \) approaches 0.34 or 0.35.
Table 2
Calculated T ($^\circ$C) for olivine equilibration, T_{eq} and mantle potential temperature, T_p

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 5 GPa</td>
<td>14551404</td>
<td>14551412</td>
<td>15651599</td>
<td>16651719</td>
<td>16651661</td>
<td>16651704</td>
</tr>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 4 GPa</td>
<td>14351407</td>
<td>14351419</td>
<td>15501608</td>
<td>16451723</td>
<td>16451665</td>
<td>16451713</td>
</tr>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 3 GPa</td>
<td>14231418</td>
<td>14231435</td>
<td>15251605</td>
<td>16201722</td>
<td>16251669</td>
<td>16251722</td>
</tr>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 2 GPa</td>
<td>14001416</td>
<td>14001440</td>
<td>15101613</td>
<td>16051731</td>
<td>16051673</td>
<td>16051731</td>
</tr>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 1 GPa</td>
<td>13801420</td>
<td>13801447</td>
<td>14901616</td>
<td>15851736</td>
<td>15851677</td>
<td>15851740</td>
</tr>
<tr>
<td>$T_{\text{eq}}(T_p)(P)$ at 1 atm</td>
<td>13651428</td>
<td>13651460</td>
<td>14751624</td>
<td>15651740</td>
<td>15701686</td>
<td>15701754</td>
</tr>
<tr>
<td>Average $T_p(\text{C})$</td>
<td>1416</td>
<td>1435</td>
<td>1611</td>
<td>1728</td>
<td>1672</td>
<td>1727</td>
</tr>
<tr>
<td>S.D.</td>
<td>8.9</td>
<td>18</td>
<td>8.8</td>
<td>8.5</td>
<td>9.0</td>
<td>18</td>
</tr>
</tbody>
</table>

F is in percent and calculated using Eqs. (A1) or (A2), as indicated in header (see Appendix A).

Olivine equilibration temperatures, $T_{\text{eq}}(\text{C})$, are calculated using models (2) and (3), and the liquid compositions in Table 1. We use constant values for $K_{\text{eq}}(\text{Fe–Mg})_{\text{ol-liq}}$ (MORB=0.31; Hawaii and Samoa=0.34; Iceland=0.32) and F_{max} (Fig. 9) and presume that f_{O_2} is buffered (see Appendix A). Mantle potential temperatures, $T_p(\text{C})$, are calculated from T_{eq} using the equations of Fig. 1, and models for melt fraction, F, where $F=f(P,C)$, where P is pressure, and C_i are weight percent composition terms, from Table 1; see Eqs. (A1) and (A2) in Appendix A.

Hawaiian lavas, though, are if anything less oxidized than QFM (Rhodes and Vollinger, 2005), and $K_{\text{eq}}(\text{Fe–Mg})$ is unlikely to be as low as 0.30 (Fig. 6b). It thus appears inescapable that excess temperatures at Hawaii (and Iceland) are very high, and that variations in f_{O_2} (Fig. 10), H_2O, CO_2 and other major mantle components (Putirka, 2005) are incapable of erasing these differences.

6. An upper mantle convective geotherm

Our estimate for T_p^{MOR} should reflect the temperature of the upper mantle in all regions thermally unperturbed by subduction or rising plumes. As a test, we compare our estimate of T_p^{MOR} to mantle temperatures derived by other means (Fig. 11). Interestingly, though our estimates of T_p beneath MORs exceed some published estimates, they are consistent with geophysical observations: Temperature estimates from heat flow and sea floor bathymetry (1450±250 °C at 90 km depth; Stein and Stein, 1992), match well with our proposed MOR geotherm. Unfortunately, the temperature of the olivine–spinel phase transition is uncertain due to uncertainty related to water contents (e.g., Smyth and Frost, 2002), mantle composition (Thybo et al., 2003; Frost, 2003) and the placement of phase boundaries (Bina and Helffrich, 1994). Indeed, Cammarano et al. (2003) conclude that inversion of seismic velocities at the 410 km discontinuity for temperatures is “unreliable.” Jeanloz and Thompson (1983) suggested a T of 1427 ± 300 °C, which is consistent with the later experiments of Ito and Katsura (1989), and probably still reflective of current uncertainties, and which overlaps our T_p^{AMG}. Temperature estimates appear somewhat more certain at 670 km. Da Silva et al. (2000) estimate temperatures for a pyrolite (PYR) and a silica enriched (Hi Si) mantle (Fig. 11). The downward extrapolation of our geotherm would appear to support a layered mantle that is enriched in SiO$_2$ below 670 km. However, Hirose’s (2002) experiments on a pyrolite mantle composition show that the majorite–perovskite phase transition, having a positive Clapeyron slope, complicates the picture. Hirose’s (2002) experiments are consistent with...
a 1600–2000 °C T range at 670 km, and hence are consistent with our MOR geotherm, and a pyrolite lower mantle. Perhaps more importantly, Hirose’s (2002) results suggest that the 670 km discontinuity is unlikely to be uplifted if \(T_{670} = 1800 \) °C. Seismologists use the observation of a shallow “670 km” seismic discontinuity as evidence of a thermal anomaly in the lower mantle (based on the negative Clapeyron slope for the spinel–perovskite phase transition in simple mantle systems), and a flat 670 km discontinuity to suggest the absence of a thermal anomaly. However, Hirose’s (2002) work shows that the Clapeyron slopes of spinel/post-spinel phase changes in a pyrolite composition mantle are such that even if the 670 km discontinuity is not anomalously shallow, excess temperatures might still be rooted in the lower mantle. Finally, Hofmeister (1999) uses thermal conductivity models to calculate a geotherm with a comparatively high implied \(T_p \) for a dry mantle (Fig. 11). The errors on this geotherm are unclear, and it is also uncertain that the small amounts of water presumed for the upper mantle (Dixon et al., 2002) would bring her geotherm and ours into agreement (Fig. 11). Our mantle potential temperatures are also lower than those implicit in Fig. 1 of Jeanloz and Morris (1986; \(\approx 1477–1630 \) °C “cold”, and \(\approx 2100–2200 \) °C “hot”), but appear to reside within their stated errors.

Another test is to compare initial melting depths that are implied by our \(T_p \) calculations, with those derived from seismic detection of low velocity zones in the mantle. Initial melting depths are calculated from the intersection of our convective geotherms with the mantle solidus. Hirschmann (2000) has reviewed experiments that delimit the dry mantle solidus. His quadratic fits to the data have the unfortunate feature of a thermal maximum, which we rectify by fitting Hirschmann’s (2000) data using the functional form of McKenzie and Bickle (1988):

\[
P(GPa) = \frac{T(°C) - 1120}{157.17} + 1.596
× 10^{17} \left[\exp \left(4.169 \times 10^{-3} \left(T(°C) - 1120 \right) \right) \right]
\]

Eq. (4) reproduces Hirschmann’s “Recommended Fit” for the solidus at \(P < 10 \) GPa (his Table 1), and is consistent with Herzberg and Zhang’s (1996) solidus estimates above 10 GPa. Depths are converted from \(P \) using PREM (Anderson, 1989).
Our values for T_p imply initial melting depths (at the dry solidus) of 220 km beneath Hawaii, 160 km beneath Iceland, and 95 km beneath MORs. The latter estimate matches almost precisely the seismic estimate for the base of the zone of “primary melting” (at 100 km; MELT Seismic Team, 1998) and is consistent with geochemical evidence that requires melting in the garnet stability field (e.g., Salters and Hart, 1989). The MELT Seismic Team’s zone of “incipient melting” extends to 150 km, and is likely controlled by mantle volatile contents. Unfortunately, no seismic experiment comparable to that performed at Iceland or Hawaii. Current work suggests that our calculated initial melting depths are at least plausible (e.g., Laske et al., 1999; Foulger et al., 2000), but higher resolution studies are needed to provide a test of low velocity zone depths (Laske et al., 1999; Priestley and Tilmann, 1999; Ritsema and Allen, 2003).

In summary, our proposed geotherm is thus consistent with sea floor bathymetry, known mantle phase transitions and seismically inferred melting depths. By all appearances, our proposed geotherm carries much less uncertainty ($\approx 78^\circ C$ for estimates of mean T_p) than other methods. We thus suggest that our proposed geotherm could be used as a constraint upon models of upper mantle convection, composition, mineralogy, and thermal conductivity.

7. Active vs. passive upwelling

Given an estimate for the mantle geotherm, does there exist some minimum threshold T_{ex} above which active upwelling is assured? Given that thermal plumes may cool en route to the surface (Leitch et al., 1996; Albers and Christensen, 1996), estimates of T_{ex} provide minimum estimates of ΔT (the temperature difference across a layer of thickness D) when calculating a Rayleigh number (Ra); Ra gives the balance between buoyancy forces that enable, and inertial forces that inhibit, convection. We let D, the depth of the convecting layer, vary for a given value of ΔT, and determine the critical depth (D_c) at which Ra becomes supercritical ($Ra_c \approx 1000$), and calculate Ra using $Ra = \frac{g \rho D^3 \Delta T}{\kappa \mu}$, where g is acceleration due to gravity, ρ is density (3300 kg/m3), κ is thermal diffusivity (10^{-6} m2/s) (see Davies, 1999) and μ is viscosity (3.9×10^{20} Pa·s; King, 1995; King (1995) reports a range of viscosities of 2×10^{19}–1×10^{21}). For T_{ex} at Hawaii and Samoa (268 °C) and Iceland (162 °C), Ra reaches 1000 at depths of 114 and 135 km respectively (Fig. 12). If circulation encompasses the entire upper mantle ($D=670$ km; then $Ra=14.1 \times 10^5$ at Iceland and 18.6×10^3 at Hawaii) or the entire mantle, Ra_c values are well above critical. These calculations suggest that Hawaii, Samoa and Iceland result from active upwellings. Our T estimates do not delimit the depths at which thermal anomalies are nucleated. But to use Iceland as an example, even plume skeptics agree that low seismic velocities extend to at least the base of the upper mantle (Foulger et al., 2000). If low seismic velocities reflect temperature variations, then it seems safe to conclude that thermally driven active upwellings extend to at least the base of the upper mantle.

8. Comparisons to some prior petrologic T_p estimates

Our present work finds agreement, but also important differences, with several recent and early studies. Our parental liquid compositions for MORB and Hawaii are remarkably similar to the “primary magma” compositions proposed by Herzberg and O’Hara (2002) (our definitions for “primary” and “primitive” magmas overlap; see Appendix A). Our parental magma compositions at Hawaii are also consistent with the minimum MgO (15 wt.%) estimates established by Wright (1973) and Clague et al. (1991). Our estimates for T_{ex} are also very similar to those estimated by Herzberg and O’Hara (1998) and MacLennan et al. (2001a). In addition, we find agreement with the 250 °C T range estimated by Klein and Langmuir (1987) for $T_{Iceland} - T_{\text{coldest MORB}}$; our estimate for $T_{Iceland} - T_{\text{coldest MORB}}$ is 215–246 °C (Fig. 9). In contrast, the global MORB T ranges of 100–140 °C inferred by Presnall et al. (2002) and Shen and Forsyth (1995) include Iceland, and hence are far too small to explain the global range of MORB olivine equilibration temperatures calculated here (Fig. 9). Shen and Forsyth (1995) appear to overestimate the influence of mantle heterogeneity. Presnall et al. (2002) appear not to account for the heat of fusion in calculating T_p, and it would also appear that phase compositions and proportions inferred from synthetic systems do not extrapolate precisely to natural systems.

As for absolute T estimates, we find agreement with Wang et al.’s (2002) estimate of $T_{mol-liquid}$ (2.2 GPa) = 1435 °C at the East Pacific Rise (their T_p = 1448 °C, if F = 6%; compared to our value of T_p = 1454 °C), and Leeman et al.’s (2005) study of the Cascades implies that T_p = 1400 °C, or higher, depending upon F. But Herzberg and O’Hara (2002) estimate lower temperatures for MORB (T_p = 1380 °C) and lower values for T_{ex} at Kilauea, Hawaii (140–190 °C). Our differences with Herzberg and O’Hara (2002) are largely due to the conversion of an olivine-liquid temperature, $T_{mol-liquid}$, to a mantle potential temperature, T_p. (As shown in the Appendix A, various thermometers yield...
similar $T^{\text{ol-liq}}$ estimates when consistent input data are used, especially at elevated P). For example, using Herzberg and O’Hara’s (2002) Kilauea sample 2E, (their Table 5), which is similar to our preferred parental liquid, they estimate that $F=14\%$ at 3.3 GPa and that $T^{\text{ol-liq}}$ (4 GPa) = 1651 °C. Using their F and the parameters of Fig. 1, we calculate that $T_p^{\text{Kilauea}}=1700$ °C, which would be in agreement with our preferred estimate of $T_p^{\text{Hawaii}}=1722$ °C. Though unclear, it appears that Herzberg and O’Hara apply $F=14\%$ at 1 atm to correct their 1 atm estimate for $T^{\text{ol-liq}}=1467$ °C, which from Fig. 1 yields $T_p^{\text{Hawaii}}=1560$ °C. Our interpolation of experimental data (Eq. (A1)) indicates, however, that F at 1 atm is 26.5%, which when applied to their $T^{\text{ol-liq}}$ (1 atm), yields $T_p^{\text{Hawaii}}=1644$ °C, much closer to our preferred value; the remaining difference at 1 atm is because Eq. (2) predicts a higher T than Beattie (1993) (see Appendix A). More interestingly, had Herzberg and O’Hara (2002) simply made their corrections from $T^{\text{ol-liq}}$ to T_p at elevated P, they would derive a T_p nearly identical to ours: From their Table 5: $F_{\text{mean}}=21.7\%$, and T_{mean} (4 GPa) = 1634 °C, which (using Fig. 1) converts to $T_p^{\text{Kilauea}}=1725$ °C, nearly identical to our $T_p^{\text{Hawaii}}=1722$ °C. We suggest that 1) Herzberg and O’Hara’s (2002) estimates for T_p at Kilauea (1520–1570 °C) are too low due to an underestimate of F, especially at 1 atm, and 2) that the discrepancy is rectified by considering their mean values for F and $T^{\text{ol-liq}}$ at elevated P. More significant is our departure with Green et al. (2001), who estimate that $T_{\text{ex}}=0$ °C (see also comparisons to Falloon et al. (this volume) in Appendix B). However, Green et al.’s (2001) implicit estimates for FeOt at Hawaii are very low, requiring unacceptably high values for fO_2 (Fig. 10). Green et al. (2001) also do not appear to correct for the heat of fusion when calculating T_p, and implicitly select a low value for F_{max} at Hawaii, by averaging temperature estimates for volcanoes that are not directly over the hot spot.

9. Summary

The key issue in the plume debate is whether mid-plate volcanic activity is caused by passive, or thermally driven active upwellings. These models are distinct in that thermally driven upwellings will exhibit excess temperatures that reflect excess heat in their mantle source regions. We propose an observation-driven approach, and updated olivine-liquid thermometers to estimate mantle temperatures and identify mantle plumes. Key observations include estimates of parental FeOt$^\text{liq}$, as inferred from olivine control lines (Figs. 5 and 7), maximum Fo contents recovered from primitive magmas or mantle xenoliths (Fig. 8), and values for K_p(Fe–Mg)$^{\text{ol-liq}}$ determined from mass balance considerations (Fig. 6).

Our T estimates are not entirely model-independent, as they require (in addition to a geothermometer) an estimate of fO_2 and, for precision, an estimate of a parental liquid composition. Our potential temperature, T_p, for the average mantle geotherm, which we derive from Siqueiros, and mean FeO contents from MORBs ($F_{\text{max}}=91.5$) is $T_p^{\text{AMG}}=1454\pm78$ °C. This value defines the convective geotherm that should apply at any locality that has not been thermally disturbed by subduction or active mantle upwelling. Global variations in sub-MOR temperatures have a range of 140 °C, but a very narrow 1σ variation of ±34 °C. Clearly, there is support for the view that isotherms are nearly flat at depth in thermally undisturbed regions of the upper mantle (McKenzie, 1967; Ahern and Turcotte, 1979; McKenzie and Bickle, 1988). Our calculations for $T^{\text{Iceland}}–T^{\text{Coldest MORB}}$ (215–246 °C) further support the Klein and Langmuir (1987) view that temperature variations ($T^{\text{Iceland}}–T^{\text{Coldest MORB}}=250$ °C) control global variations in FeO, Na$_2$O and SiO$_2$, and that parental MORB liquids are picritic, and produced at high temperatures (O’Hara, 1968; Jacques and Green, 1980; Stolper, 1980).

Potential temperatures at Hawaii and Samoa are 1722 °C and at Iceland is 1616 °C, and exceed even the highest temperatures estimated for MORBs by >100 °C. A source of excess thermal energy seems inescapable. These excess temperatures are favored by us because they explain the coincidence at some hot spots of high excess topography (Sleep, 1990; Schilling, 1991; Watson and McKenzie, 1991), and primitive liquids that contain (a) high TiO$_2$/Na$_2$O and high Sm/Yb ratios (Putirka, 1999), and (b) high FeO, and low SiO$_2$ contents (Langmuir et al., 1992; Allarede, 1992). What is particularly compelling is that Ti/Na ratios are controlled by clinopyroxene-, and Sm/Yb ratios by garnet-liquid equilibria. If excess temperatures were non-existent, it would be a cruel happenstance that petrologic indicators of high $P–T$ partial melting would be apparent, but lack such a meaning.

Our T estimates do not indicate whether or not plumes nucleate at the core–mantle boundary. However, Morgan (1971) might be correct about the basic mechanism, and also wrong about the site of plume nucleation: The concept of a layered mantle, with plumes nucleating at 670 km, is not new (Allegr and Turcotte, 1985), and has not been entirely discarded (e.g., Tackley, 2000). Since it is unclear that Earth’s core contributes mass to mantle upwellings, we suggest that perhaps the only signal from the core may be thermal in nature, and that dynamic modelers investigate whether there is a critical value for T_{ex} beyond which plume nucleation at the core–mantle boundary is assured.
Iron in volcanic rocks is variously reported as Fe$_2$O$_3$, FeOt (t for “total”) or some combination of Fe$_2$O$_3$ and FeO. For consistency, we recast all Fe analyses as FeO total: we convert all oxides to a cation fraction, where, for example, reported Fe$_2$O$_3$ and FeO contents are divided by the molecular weights of FeO$_{1.5}$ and FeO respectively (and Al$_2$O$_3$, Na$_2$O and K$_2$O are respectively divided by the molecular weights of AlO$_{1.5}$, NaO$_{1.5}$, and KO$_{1.5}$, etc.). We calculate the cation sum, FeO$_{t+}$=FeO$_{1.5}$+FeO, and multiply FeO$_{t+}$ by the molecular weight of FeO, and similarly weight all other oxides by their respective molecular weights. Renormalization to 100 yields weight percent values for FeOt, which is used for all subsequent calculations, and all graphs in this paper. When Fe$_2$O$_3$ and FeO are both reported, and Fe$_2$O$_3$/FeO$_{t+}$<10% by weight, then if FeOt is calculated as Fe$_2$O$_3$+FeO, the error is less than 1%.

To calculate Fe$^{2+}$/Fe$^{3+}$ and Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$) from FeOt, we use the expressions of Kress and Carmichael (1988). Since Fe$^{2+}$/Fe$^{3+}$ varies with T, we apply an iterative procedure: we calculate Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$) over a range of temperatures using our model compositions (Table 1) and natural compositions reported in Rhodes and Vollinger (2005) and Bezos and Humler (2005). We apply the fO$_2$ conditions inferred by the aforementioned studies and presume that fO$_2$ is buffered. We then use a calculated value for T to infer the cation ratio Fe$^{2+}$/Fe$^{3+}$, and then use this new value of Fe$^{2+}$/Fe$^{3+}$ to recalculate T. Because of the greater molecular weight of Fe$_2$O$_3$ compared to FeO, a 2% change in the weight ratio translates to approximately a 1% change in the cation ratio Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$).

A.2. Calculation of parental magma compositions

The method of T estimation of Putirka (2005) implies a (predicted) value for MgO$^{\text{pl}}$ for parental magmas, which can be used to calculate other oxides. We use the term “parental” in that our liquid compositions in Table 1 represent the liquids that are parental to all observed and buried volcanic and crystalline products related to mantle melting. Our liquids in Table 1 would also represent the mean compositions of what are sometimes called “primary” liquids, which are generated in the mantle, pooled, and then delivered towards the surface. An alternative term might be “pooled primary liquids.”

To reconstruct a parental magma, we first determine the MgO content of the parental magma. Since FeOt is invariant along olivine control (Fig. 5), FeOt along an olivine control line (a variation trend controlled by olivine addition/removal only; Figs. 5 and 7) is equivalent to FeO$^{\text{pl}}$ or FeO$_{t+}^{\text{pl}}$. With a calculated value for K$_D$(Fe–Mg)$_{\text{ol-liq}}$, we use FeO$_{t+}^{\text{pl}}$ and observed Fo$_{\text{max}}$ to yield a unique value for MgO$_{\text{pl}}$ (independent of any model for T or mantle composition): Fo$_{\text{max}}$ fixes the value for Fe/Mg of olivine, and with (Fe/Mg)$_{\text{ol}}$ the value for K$_D$(Fe–Mg)$_{\text{ol-liq}}$ fixes the value of Fe/Mg for the liquid. If FeO$_{t+}^{\text{pl}}$ is known, then MgO$_{\text{pl}}$ is fixed by these values. Similarly, given estimates for MgO$_{\text{pl}}$, Fo$_{\text{max}}$ and K$_D$(Fe–Mg)$_{\text{ol-liq}}$, one may calculate FeO$_{t+}^{\text{pl}}$, which is how we test the model of Green et al. (2001) (Fig. 10). To reconstruct the remaining parental magma components, we add olivine to a “primitive” lava until the predicted MgO content is achieved. Primitive lavas are derived from a mean of natural lava compositions that are sufficiently MgO rich to be on an “olivine control” line. We use the following MgO values as delimiters for our primitive liquids; Siqueiros: 9–10.5 wt.%; Iceland: 9.5–11.5 wt.%; Hawaii: 8–10 wt.%; Samoa, 8.75–1.5 wt.%. Since olivine control lines represent mixtures, not liquid lines of descent, we do not perform a “reverse fractionation model”, which would have no meaning. We use Fig. 5 to determine the mean Fo content along an olivine control line, and use this Fo for correction. This choice enforces that our liquids in Table 1 will always lie within observed major oxide variation diagrams. We emphasize that whole rocks that have MgO$_{\text{pl}}$ values are unlikely to be liquids: They are mixtures that have the appropriate MgO$_{\text{pl}}$ only by accident, not by virtue of evolution.
A.2.1. Estimating $K_D(\text{Fe–Mg})_{\text{ol-liq}}$

Tests show that none of the recent models developed to predict $K_D(\text{Fe–Mg})_{\text{ol-liq}}$, i.e., Herzberg and O’Hara, 2002; Putirka, 2005; Toplis, 2005, capture internal variations in $K_D(\text{Fe–Mg})_{\text{ol-liq}}$. Regression analysis of experimental data ($n=1007$, Fig. 3) for $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ (measured) vs. $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ (calculated) shows that all three models yield $R^2<0.04$, slopes of regression lines that are embarrassingly flat (<0.4), and standard errors of estimate that are ±0.06. None of these models can be intrinsically preferred over the other, and are poor substitutes for observations (Fig. 6). Because adequate data are not available at all localities, we make use of calculated values for consistency.

We first use observed values for $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ (Fig. 6) to estimate MgO$^\text{pl}$, and then iteratively apply the mean $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ calculated from Herzberg and O’Hara (2002), Putirka (2005), and Toplis (2005). This method yields a higher than observed $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ at Siqueiros (Fig. 6); if the values for $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ in Fig. 6 are accurate, however, T_p for MORB is lower by 25 °C, and excess temperatures are greater by the same amount.

A.3. Comparison of olivine-liquid thermometers

Table A1 shows that at moderate P, when consistent input is used, various models yield estimates that are within 1σ model error. But when such models disagree, which is to be preferred? Beattie (1993) used the olivine binary to show that his two-lattice solution model is superior to the regular solution model employed by Ghiorso et al. (1983). We extend this test by comparing T estimates for melting of pure forsterite (Presnall and Walter, 1993). The modified Beattie (1993) model and Eq. (4) provides superior estimates of Fo melting. However, this comparison has limitations: natural liquids do not approach the Fo binary, so success in Fig. A1 can hardly lead to confidence in predicting T for natural samples. For example, the Beattie (1993) model yields higher temperatures than Ford et al. (1983) for Eqs. (2) and (3) for Kilauea-H at 3 GPa (Table A2) even though the Beattie (1993) model yields lower temperatures for pure Fo. And though Eq. (4) and Beattie (1993) both closely reproduce the Fo melting curve, these models disagree by as much as 115 °C (Kilauea-H at 3 GPa, Table A2). An alternative test is to consider that by applying Eq. (1) with expressions of $D_{\text{ol-liq}}=f(T)$ and $D_{\text{Fe}}=f(T)$, it is possible to predict not only T, but also 1) $K_D(\text{Fe–Mg})_{\text{ol-liq}}$, since $K_D(\text{Fe–Mg})_{\text{ol-liq}}=D_{\text{Fe}}/D_{\text{Mg}}$, and 2) the Fo content of the equilibrium olivine, since $X_{\text{Fe}}^\text{ol}=D_{\text{Fe}}/D_{\text{Mg}}$, $X_{\text{Fe}}=D_{\text{Fe}}$, and $X_{\text{Mg}}=D_{\text{Mg}}$. Table A2 compares estimates of T, $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ and Fo. Note that for Kilauea-H at 3 GPa, Eqs. (4) and (5) yield suspiciously high estimates for $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ and a low value for Fo, compared to other models. The models are too inaccurate to make judgments regarding small variations in such quantities, but these comparisons may be useful at differentiating T estimates that vary by more than 1–2σ. With differences in T of 1σ or less, or small differences in predicted Fo or $K_D(\text{Fe–Mg})_{\text{ol-liq}}$ it is probably best to average the T estimates since such differences reflect experimental and calibration error.

A.4. Conversion of olivine equilibration temperatures to mantle potential temperatures, and calculating F

Experiments show that F varies strongly with MgO content and P; to estimate F we performed regression analysis of peridotite partial melting experiments from Takahashi et al. (1993), Baker and Stolper (1994), Baker et al. (1995), Robinson et al. (1998) and Walter (1998), whose data are internally consistent, and yield the following expression:

$$F(\%) = -117.2 - 1.62P(\text{GPa}) + 2.12[\text{SiO}_2^\text{liq}]$$
$$+ 4.2[\text{MgO}^\text{liq}] - 3.93[\text{FeO}^\text{liq}].$$

In Eq. (A1), compositional parameters are in weight %; $n=54$, $R^2=0.96$ and the standard error of estimate (SEE) for F is ±4.8%. Eq. (A1) predicts values of F that approach geochemical estimates of F at Hawaii (Feigenson et al., 2003) and Iceland (MacLennan et al., 2001a). But this
expression predicts low values of \(F \) for MORB (7.9% at 1 GPa) compared to interpolation of just the Baker et al. (1995) data (which indicate that \(F \) is closer to 13% at 1 GPa). When data from Pickering-Witter and Johnston (2000) are included in the regression, \(F \) is less precisely recovered, but yields higher estimates of \(F \) for MORB (apparently by weighting 1 GPa data):

\[
F(\%) = -105.1 - 2.34P(\text{GPa}) + 1.789[\text{SiO}_2^{\text{liq}}] + 3.84[\text{MgO}^{\text{liq}}] - 2.26[\text{FeO}^{\text{liq}}].
\]

(A2)

For Eq. (A2), \(n=80, R^2=0.85 \) and the SEE is ±8.3%. This expression also yields much higher estimates of \(F \) at Hawaii (>30%), and Samoa (\(F > 20% \)). Since the Pickering-Witter and Johnston (2000) data may be more applicable to the high alkali lavas from Samoa, we present \(T_p \) estimates using Eq. (A2) for both MORB and Samoa (Table 2). Clearly, additional data are needed to better predict \(F \) and more precisely delimit \(T_p \).

The calculation of \(F \) is the only part of our approach that depends upon an assumption of mantle composition, which we presume to be peridotite. Sobolev et al. (2005) have suggested that the mantle beneath Hawaii has a large fraction of a nearly olivine-free, eclogite-rich component. But eclogite or garnet–pyroxenite dominated sources are neither compatible with trace and major element, and isotopic systematics (Norman and Garcia, 1999; Norman et al., 2002; Putirka, 1999; Stracke et al., 2003), nor the large amounts of picritic lavas that occur from Mauna Kea to Koolau (Norman and Garcia, 1999; Rhodes and Vollinger, 2004; Garcia, 2002), let alone very high olivine-liquid equilibration temperatures (Putirka, 2005; this study). Until the olivine-free mantle model can meet these challenges, it is not a useful proposition.

Appendix B. Differences between this study, and Falloon et al., this volume

As with Green et al. (2001), Falloon et al. (this volume) also infer that at Hawaii, \(T_c \approx 0 \, \text{°C} \). There are several reasons why we obtain higher \(T \) estimates for Hawaii, and \(T_{\text{ex}} \), and why we believe their lower \(T \) estimates are incorrect: (a) Falloon et al. do not correct for the heat of fusion (Cawthorn, 1975), which is crucial to any analysis of \(T_p \) and \(T_{\text{ex}} \) (high MgO magmas are generated with greater thermal energy). (b) MgO is underestimated for Falloon et al.’s parental magma compositions at Hawaii (their Table 1): If we apply the \(fO_2 \) conditions of Rhodes and Vollinger (2005; i.e., \(\text{FeO}=0.92[\text{FeOT}] \)) and accept Falloon et al.’s estimate of FeOt, then even if \(K_p(\text{Fe–Mg})^{\text{ol-liq}}=0.30 \), a liquid with FeOt=11.8 wt.% would have 19.2 wt.% MgO for equilibrium with \(\text{Fo}=91.3 \), and 17.8% MgO, for \(\text{Fo}=90.7 \) (these calculations are model-independent). Yet Falloon et al. report that parental liquids at Hawaii have \(\text{MgO}=14.8 \) wt.%. (c) Falloon et al. use a value of \(F_{\text{max}} \) of 90.7 at Hawaii even though several studies have established that \(F_{\text{max}} \) at Hawaii is at least 91.3 (Baker et al., 1996; Garcia et al., 1995; Norman and Garcia, 1999; this work, Fig. 8). (d) Falloon et al. estimate a remarkably high value for FeOt for MORB (Fig. 5), which is well above the MORB mean, and approaches the upper 95th percentile for global MORB. Finally, Falloon et al. suggest that \(K_p(\text{Fe–Mg})^{\text{ol-liq}} \) should be 0.29 at Hawaii, and 0.32 at MORs. Though Falloon et al., appear not to use these values for the calculation of \(T_{\text{ex}} \), their suggested values contradict natural observations (Fig. 6), and the experimental data compiled for this study show that the effect of TiO₂ on \(K_p(\text{Fe–Mg})^{\text{ol-liq}} \) is negligible (slope = 0.006; \(R^2=0.019 \)) compared to \(T_p \) or \(T_e \). Moreover, at Hawaii the lithosphere is thick (e.g., Bock, 1991, Li et al., 2004) and hence \(F_{\text{max}} \)-liquid equilibrium probably occurs at much greater depths compared to MORs. Regardless of whether one considers variations in \(K_p(\text{Fe–Mg})^{\text{ol-liq}} \) to be driven by temperature (Sobolev and Danyshevsky, 1994), pressure (e.g., Herzberg and O’Har, 1998, Putirka, 2005), or both (Toplis, 2005), \(K_p(\text{Fe–Mg})^{\text{ol-liq}} \) should be greater at Hawaii. These differences, especially (a)–(d) in the case of Falloon et al. (this volume), lead to underestimates of \(T_{\text{liq}} \) and \(T_{\text{ex}} \) at Hawaii.

Table A1

<table>
<thead>
<tr>
<th>Kiluea-H</th>
<th>MORB-H</th>
<th>HSDP</th>
<th>Siqueiros</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{ex}}) & (T_{\text{ex}}) & (T_{\text{ex}}) & (T_{\text{ex}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K_p(\text{Fe–Mg})^{\text{ol-liq}}) d</td>
<td>(0.29)</td>
<td>(0.28)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>(K_p(\text{Fe–Mg})^{\text{ol-liq}}) d</td>
<td>(0.29)</td>
<td>(0.28)</td>
<td>(0.32)</td>
</tr>
</tbody>
</table>
Table A1 (continued)

<table>
<thead>
<tr>
<th></th>
<th>Kilauea-H</th>
<th>MORB-H</th>
<th>HSDP</th>
<th>Siqueiros</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{D(Mg)}^{(Fe-Mg)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toplis (2005)</td>
<td>0.32</td>
<td>0.28</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>$K_{D(Mg)}^{(Fe-Mg)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H&O</td>
<td>0.34</td>
<td>0.32</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td>$P(2005)^f$</td>
<td>0.34</td>
<td>0.32</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>Mean T_p (°C)</td>
<td>1626</td>
<td>1402</td>
<td>1722</td>
<td>1432</td>
</tr>
<tr>
<td>T_p S.D.</td>
<td>18</td>
<td>12</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Excess $T(°C)$</td>
<td>224</td>
<td></td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

aExcess temperatures are calculated from expressions for $D_{Mg}=f(T,P,X_i)$, assuming liquids have equilibrated with Fo$_{max}$ at the stated pressure. bPressure (brackets) is calculated from $T(C)^{ol-liq}$ and Eqs. (A1) at Hawaii and (A2) for MORB. Compositions Kilauea-H and MORB-H are primary magma compositions considered representative by C. Herzberg (pers. comm.; see Table 1). HSDP and Siqueiros are from this study (Table 1). cH&O refers to the T correction of Herzberg and O’Hara (2002) applied to the Beattie (1993) model (Beattie’s Eq. (10)); dPutirka (2005).

Table A2
Comparison of predicted values for olivine equilibration temperatures, $K_{D(Fe-Mg)}^{(Fe-Mg)}$, and Fo contents: $T(C)^{ol-liq} = [K_{D(Fe-Mg)}^{(Fe-Mg)}(Fo)^{ol-liq}(Fo)]$

<table>
<thead>
<tr>
<th></th>
<th>Kilauea-H</th>
<th>MORB-H</th>
<th>HSDP</th>
<th>Siqueiros</th>
<th>Excess $T(C)^d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (GPa)</td>
<td>1 atm</td>
<td>1 atm</td>
<td>1 atm</td>
<td>1 atm</td>
<td>$K-M$ $H-S$</td>
</tr>
<tr>
<td>F</td>
<td>22.90% (A1)</td>
<td>12.80% (A1)</td>
<td>26.20% (A2)</td>
<td>14.30% (A1)</td>
<td></td>
</tr>
<tr>
<td>Eqs. (2) and (3)</td>
<td>1528[0.34][90.2]</td>
<td>1347[0.32][90.6]</td>
<td>1568[0.35][90.9]</td>
<td>168[0.32][90.9]</td>
<td>249</td>
</tr>
<tr>
<td>T_p</td>
<td>1681</td>
<td>1432</td>
<td>1743</td>
<td>1463</td>
<td></td>
</tr>
<tr>
<td>Eqs. (4) and (5)</td>
<td>1412[0.29][91.5]</td>
<td>1285[0.30][91.2]</td>
<td>1446[0.29][92.3]</td>
<td>1300[0.30][91.6]</td>
<td>195</td>
</tr>
<tr>
<td>T_p</td>
<td>1565</td>
<td>1370</td>
<td>1621</td>
<td>1395</td>
<td></td>
</tr>
<tr>
<td>Beattie (1993) with H&O</td>
<td>1505[0.31][90.9]</td>
<td>1367[0.31][90.7]</td>
<td>1535[0.31][91.7]</td>
<td>138[0.31][91.1]</td>
<td>206</td>
</tr>
<tr>
<td>T_p</td>
<td>1568</td>
<td>1452</td>
<td>1710</td>
<td>1476</td>
<td></td>
</tr>
<tr>
<td>Ford et al. (1983)</td>
<td>1456[0.31][91.0]</td>
<td>1330[0.30][90.7]</td>
<td>1486[0.31][91.8]</td>
<td>134[0.31][91.1]</td>
<td>194</td>
</tr>
<tr>
<td>T_p</td>
<td>1609</td>
<td>1415</td>
<td>1661</td>
<td>1441</td>
<td></td>
</tr>
<tr>
<td>Mean T_p (°C)</td>
<td>1628</td>
<td>1417</td>
<td>1684</td>
<td>1443</td>
<td>211</td>
</tr>
<tr>
<td>S.D.</td>
<td>52</td>
<td>35</td>
<td>53</td>
<td>36</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kilauea-H</th>
<th>MORB-H</th>
<th>HSDP</th>
<th>Siqueiros</th>
<th>Excess $T(C)^d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(GPa)$</td>
<td>3</td>
<td>0.8</td>
<td>3</td>
<td>0.8</td>
<td>$K-M$ $K-M$</td>
</tr>
<tr>
<td>F</td>
<td>13.20%</td>
<td>10.90%</td>
<td>21.30%</td>
<td>12.40%</td>
<td></td>
</tr>
<tr>
<td>Eqs. (2) and (3)</td>
<td>1585[0.35][90.1]</td>
<td>1360[0.32][90.6]</td>
<td>1627[0.35][90.8]</td>
<td>138[0.32][90.9]</td>
<td>210</td>
</tr>
<tr>
<td>T_p</td>
<td>1633</td>
<td>1423</td>
<td>1729</td>
<td>1454</td>
<td></td>
</tr>
<tr>
<td>Eqs. (4) and (5)</td>
<td>1570[0.36][89.8]</td>
<td>1332[0.33][90.3]</td>
<td>1602[0.35][90.9]</td>
<td>134[0.33][90.8]</td>
<td>223</td>
</tr>
<tr>
<td>T_p</td>
<td>1618</td>
<td>1395</td>
<td>1704</td>
<td>1420</td>
<td></td>
</tr>
<tr>
<td>Beattie (1993) with H&O</td>
<td>1685[0.31][90.9]</td>
<td>1412[0.31][90.7]</td>
<td>1715[0.31][91.7]</td>
<td>142[0.31][91.1]</td>
<td>224</td>
</tr>
<tr>
<td>T_p</td>
<td>1733</td>
<td>1509</td>
<td>1817</td>
<td>1499</td>
<td></td>
</tr>
<tr>
<td>Ford et al. (1983)</td>
<td>1620[0.40][88.7]</td>
<td>1370[0.34][90.0]</td>
<td>1652[0.40][89.7]</td>
<td>138[0.33][90.5]</td>
<td>223</td>
</tr>
<tr>
<td>T_p</td>
<td>1668</td>
<td>1433</td>
<td>1754</td>
<td>1460</td>
<td></td>
</tr>
<tr>
<td>Mean T_p (°C)</td>
<td>1663</td>
<td>1440</td>
<td>1751</td>
<td>1458</td>
<td>223</td>
</tr>
<tr>
<td>S.D.</td>
<td>51</td>
<td>49</td>
<td>48</td>
<td>32</td>
<td>10</td>
</tr>
</tbody>
</table>

aExcess temperatures are $K-M = T^{Kilauea-H} - T^{MORB-H}$ and $H-S = T^{HSDP} - T^{Siqueiros}$.

References

Moore, G., Carmichael, I.S.E., 1998. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico; constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology 130, 304–319.

Müntener, O., Kelemen, P.B., Grove, T.L., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: and

