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Geochemical zoning of volcanic chains associated
with Pacific hotspots
Shichun Huang1*, Paul S. Hall2 and Matthew G. Jackson2

Recent Hawaiian volcanism is manifest as two geographically
and geochemically distinct groups of volcanoes1, the Loa
trend in the south and the Kea trend in the north2,3. The
differences between the Loa and Kea lavas are attributed
to spatial variations in the geochemical structure of the
underlying Hawaiian mantle plume4–9. In turn, the Hawaiian
plume structure is thought to reflect heterogeneities in its
mantle source7,8. Here we compile geochemical data10 from
the Hawaiian and two other volcanic ocean island chains—the
Samoan and Marquesas—that formed above mantle plumes
upwelling beneath the Pacific plate. We find that the volcanoes
at both Samoa11 and the Marquesas12 show geographic and
geochemical trends similar to those observed at Hawaii.
Specifically, two subparallel arrays of volcanoes exist at both
locations. In each case, the southern trend of volcanoes has
higher radiogenic lead isotope ratios, 208Pb∗/206Pb∗, and lower
neodymium isotope ratios, εNd, than those of the corresponding
northern trend. We suggest that geochemical zoning may be a
common feature of mantle plumes beneath the Pacific plate.
Furthermore, we find that the pattern repeats between island
chains, with the highest 208Pb∗/206Pb∗ and the lowest εNd

found at Samoa in the south and the lowest 208Pb∗/206Pb∗

and the highest εNd observed at Hawaii in the north. We infer
that isotopically enriched material is preferentially distributed
in the lower mantle of the Southern Hemisphere, within the
Pacific low seismic velocity zone.

Although considerable variability exists in the geophysical and
geochemical characteristics of hotspots, implying variations in their
particular origins, a range of evidence strongly suggests that at
least some hotspots are caused by mantle plumes rising from
a thermal boundary layer (TBL) at the core–mantle boundary
(CMB; refs 13–16). This set of hotspots, which include Hawaii,
Samoa and the Marquesas, thus provide an important window into
the lowermost mantle.

Hawaiian volcanism (<2Myr)manifests itself as two subparallel,
en echelon groups of volcanoes, the Loa (southern) and the Kea
(northern) trends1 (Fig. 1). The formation of en echelon volcanic
trends at Hawaii has been attributed to the patterns of stress within
the lithosphere that develop as a result of volcanic loading following
a change in the direction of relative motion between the plate and
plume17,18. Important geochemical differences in lavas from the two
Hawaiian volcanic trends have been documented2–4,9. Specifically,
Abouchami et al.2 showed that at a given 206Pb/204Pb, Loa trend
lavas have higher 208Pb/204Pb than Kea trend lavas. This Pb isotopic
difference can be expressed using a combined Pb isotopic ratio,
208Pb∗/206Pb∗, the ratio of radiogenic ingrowth of 208Pb and 206Pb
since the formation of the Earth that measures the time-integrated
Th/U (ref. 19). At Hawaii, 208Pb∗/206Pb∗ is correlated with Sr and
Nd isotopic ratios2,3 and La/Nb (ref. 20), and Loa trend lavas have
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Figure 1 |Maps of Hawaiian, Samoan and Marquesas volcanoes and their
positions in the Pacific Ocean.

higher 208Pb∗/206Pb∗ and lower εNd than Kea trend lavas (Fig. 2).
This inter-trend difference has been interpreted as reflecting
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Figure 2 | 208Pb∗/206Pb∗ versus εNd for the Pacific hotspot lavas. a, The Hawaiian and Samoan lavas. b, The Marquesas lavas compared with the
Hawaiian and Samoan lavas. 208Pb∗/206Pb∗ measures the radiogenic ingrowth of 208Pb/204Pb and 206Pb/204Pb since the formation of the Earth, and is
defined as [(208Pb/204Pb)sample–(208Pb/204Pb)Earth Initial]/ [(206Pb/204Pb)sample–(206Pb/204Pb)Earth Initial], with (208Pb/204Pb)Earth Initial= 29.475 and
(206Pb/204Pb)Earth Initial=9.307 based on Canyon Diablo Troilite19. εNd= [(143Nd/144Nd)sample/(143Nd/144Nd)CHUR− 1]× 1,000, where
(143Nd/144Nd)CHUR=0.512638 for Nd isotopic measurements normalized to 146Nd/144Nd=0.7219, and (143Nd/144Nd)CHUR=0.511836 for Nd isotopic
measurements normalized to 146Nd/142Nd=0.636151. Data sources are in Supplementary Table S1. The analytical uncertainties are in generally smaller
than the symbol size.

geochemical structure within the conduit of the Hawaiian plume,
and severalmodels of plume structure have been proposed2,4–8.

Samoan volcanism also forms two subparallel, en echelon
volcanic trends, known as the Malu (southern) and Vai (northern)
trends21 (Fig. 1). The separation of the Malu and Vai trends
is ∼50 km, similar to that between the Loa and Kea trends at
Hawaii (Fig. 1). Samoan lavas form a negative 208Pb∗/206Pb∗–
εNd array, and as at Hawaii, the southern trend (Malu) lavas
have higher 208Pb∗/206Pb∗ and lower εNd than the northern
trend (Vai) lavas (Fig. 2).

The physical pattern of volcanism at the Marquesas is somewhat
less well defined than that at Hawaii or Samoa, owing in part to a
lack of high-resolution bathymetric data that would better constrain
submarine volcanism in the area (Fig. 1). However, the Marquesas
volcanoes show a clear geographic–geochemical correlation12. This
correlation is very similar to that exhibited at both Hawaii and
Samoa. In detail, lavas from the southern (Motu) trend of the
Marquesas volcanoes (Ua Pou, Tahuata, Fatu Hiva and Motu
Nao) have lower εNd at a given 208Pb∗/206Pb∗ than lavas from
the northern (Nuku) trend (Eiao, Nuku Hiva, Ua Huka, and
Hiva Oa; Figs 1 and 2).

The Hawaiian, Marquesas and Samoan hotspots exhibit
strikingly systematic geographic–geochemical variations. At an
intra-hotspot scale, lavas from the southern trend at each hotspot
(Loa at Hawaii, Malu at Samoa, Motu at the Marquesas) have
more enriched (higher 208Pb∗/206Pb∗ and lower εNd) isotopic
compositions than lavas from the respective northern trends (Kea at

Hawaii, Vai at Samoa, Nuku at the Marquesas). At an inter-hotspot
scale, the Samoan, Marquesas and Hawaiian hotspots as a whole
exhibit trends in isotopic composition that are at least qualitatively
consistent with the individual intra-hotspot trends. In particular,
208Pb∗/206Pb∗ increases and εNd decreases fromnorth to south in the
order of Hawaii–Marquesas–Samoa (Figs 2 and 3). Moving from
north to south, these variations imply an increase in the relative
proportion of a high-208Pb∗/206Pb∗ and low-εNd component at the
TBL where these plumes originate (Fig. 3). The high-208Pb∗/206Pb∗
and low-εNd isotopic signature at Samoa is likely to reflect a recycled,
ancient continental crustal component11. AtHawaii, although other
interpretations exist22, the high-208Pb∗/206Pb∗ and low-εNd isotopic
signature is arguably best explained as reflecting a recycled, ancient
oceanic crustal component, including sediments20,23. Consequently,
we suggest that the high-208Pb∗/206Pb∗ and low-εNd components
exhibited at Hawaii, Marquesas and Samoa are related to the
DUPAL anomaly, a globe-encircling region of isotopic enrichment
(high 208Pb∗/206Pb∗) at the base of the southern hemispheric mantle
that is believed to be a heterogeneous assemblage of ancient recycled
crustal materials24. This is not to say that the Hawaiian, Marquesas
and Samoan lavas sample the same high-208Pb∗/206Pb∗ and low-εNd
component. Rather, the enriched components at these three
hotspots have the same isotopic characteristics (high-208Pb∗/206Pb∗
and low-εNd), which, together, can be best explained as recycled
ancient crustal components.

The surface distribution of hotspot lavas characterized by the
DUPAL anomaly has been shown to be correlated with the large
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Figure 3 |Geochemical variation of the Hawaiian, Samoan and Marquesas
lavas with latitude. a, Average 208Pb∗/206Pb∗ versus latitude. b, Average
εNd versus latitude. The bars denote one standard deviation around the
averages of the isotopic compositions of lavas from each trends: Kea (179
samples), Loa (100), Vai (63), Malu (19), Nuku (39) and Motu (40)
(Supplementary Table S1). Open squares are for southern trends and filled
squares for northern trends.

regions of low seismic velocity in the lowermost mantle, commonly
called superplumes25,26. The three hotspots considered here all
overlie the region of low seismic velocity known as the Pacific
superplume (Fig. 4). We propose that the observed inter- and
intra-hotspot geochemical differences (Figs 2 and 3) at Hawaii, the
Marquesas and Samoa reflect their respective positions relative to
the Pacific superplume.

Numerical geodynamic modelling studies have demonstrated
that compositional heterogeneities embedded within the TBL
remain physically distinct, as elongated filaments, as they are drawn
in laterally from distances of as much as ∼1,000 km to ascend
through the plume conduit7,8,27. These studies also suggest that the
spatial distribution of heterogeneities within the TBL is preserved
in some way within the plume conduit itself. For example, the
presence of horizontal layers in the TBL results in a concentrically
zoned plume conduit, whereas heterogeneity arrayed azimuthally
in the TBL in the vicinity of the plume conduit retains its relative
distribution within the plume conduit, resulting in azimuthal
zoning of the plume conduit that echoes the TBL (Fig. 8 of
Farnetani and Hofmann7). At an inter-hotspot scale, the Hawaiian
and Marquesas plume conduits are both situated at the edge of
the Pacific superplume, whereas the Samoan plume conduit lies
closer to its centre (Fig. 4). Assuming the low velocity anomaly is
associated with enriched mantle, that is, the DUPAL anomaly25,
then the Hawaiian plume would sample the least amount of
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Figure 4 | Samoa, the Marquesas and Hawaii superimposed on maps of
seismic shear wave velocity anomalies at 2,800 km depth. Three different
shear wave velocity models are shown: a, SAW642AN (ref. 29); b,
S362ANI (ref. 30); and c, S40RTS (ref. 31). The location of active volcanism
associated with each hotspot is shown as a black triangle. The
corresponding region of the TBL at the base of the mantle sampled by each
plume (that is, its footprint) is indicated by the circle around each triangle.
These circles correspond to a region with a diameter of approximately
1,000 km (ref. 7). The dashed line bisects the circular footprint of each
plume to delineate the two distinct regions of the boundary layer sampled
by individual volcanic trends at each hotspot (as labelled), consistent with
an azimuthal heterogeneity model7. At Hawaii and the Marquesas, the
region sampled by the southern trend has significantly lower seismic
velocities than the region sampled by the northern trend. At Samoa,
differences between the two regions are less pronounced. The surface
locations of other hotspot volcanism in the vicinity of the Pacific superswell
are shown as small black circles for reference and labelled as follows:
C—Caroline, E— Easter, G—Galapagos, L—Lord Howe, M—Macdonald,
P—Pitcairn, S—Society, T—Tasmanids.
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enriched mantle overall whereas the Samoan plume would sample
the greatest relative proportion of enriched mantle, with the
Marquesas falling somewhere in between. This interpretation is
thus consistent with the overall trend of isotopic enrichment from
Hawaii to theMarquesas to Samoa (Fig. 3).

At an intra-hotspot scale, the distributions of geochemical
heterogeneity at the base of the Hawaiian and Marquesas plume
conduits, as defined by seismic velocity anomalies, are azimuthally
arrayed (Fig. 4), similar to that in Fig. 8c of Farnetani and
Hofmann7. In particular, the southern half of the base of the plume
conduit lies within the region of low seismic velocity associated
with the Pacific superplume whereas the northern half does not
(Fig. 4). The distribution of heterogeneity in theTBLwould result in
bilaterally zoned plume conduits at both Hawaii and theMarquesas
(Fig. 8c,d of Farnetani and Hofmann7), with the southern halves
of the Hawaiian and Marquesas plume conduits containing greater
percentages of mantle derived from the region of low seismic
velocity (that is, the enriched, high 208Pb∗/206Pb∗ and low εNd,
mantle component) than the northern halves (Figs 2, 4). Such a
bilaterally zoned plume model has previously been proposed for
the Hawaiian plume2, although the Pacific superplume was not
identified as the source of the zoning.

At Samoa, the picture is somewhat more complicated. As shown
in Fig. 4, the northern half of the plume conduit samples a region
of lower seismic velocity than does the southern half. As before,
assuming low seismic velocities correspond to the enriched mantle
component, this would be expected to result in an azimuthally
zoned plume conduit in which the northern (Vai) trend lavas have
a more enriched (higher 208Pb∗/206Pb∗ and lower εNd) isotopic
signature than the southern (Malu) trend lavas. However, this is
the opposite of the observed intra-hotspot geochemical difference
at Samoa (Fig. 2). This disparity might be explained by a number
of factors. First, we note that Samoa is extremely close to the
Tongan subduction zone (Fig. 4), and the Samoan plume conduit
is likely to be strongly tilted by the mantle flow induced by
the subducting slab28. Consequently, the base of the Samoan
plume conduit may be significantly offset from the assumed
simple vertical projection from the Samoan volcanoes. Second,
the Samoan plume is well removed from the edge of the Pacific
superplume; therefore, the geochemical zoning of the Samoan
plume conduit is probably controlled by the detailed structure of
heterogeneity within the Pacific superplume, rather than by the
contrast between superplume and non-superplume mantle. Such
heterogeneity within the superplume might not be well resolvable
seismically. Finally, unlike at Hawaii or the Marquesas, there is
considerable disagreement between seismic models as to the exact
pattern of seismic velocity anomalies at the base of the mantle
beneath Samoa, suggesting that further refinement of the seismic
models is necessary in this region29–31 (Fig. 4).

Isotopic heterogeneities in lavas from different hotspots may
offer the best opportunity for mapping the distribution of
compositional heterogeneity in the lower mantle at a large scale24,25.
Geodynamic modelling demonstrates that the distribution of such
heterogeneities within the boundary layer giving rise to a mantle
plume results in characteristic spatial patterns of heterogeneity
within the plume conduit7,8,27. Hotspots with en echelon volcanoes
(for example,Hawaii, Samoa, theMarquesas) present opportunities
to probe the spatial structure of plume conduits, and thereby map
the distribution of heterogeneity in the lowermost mantle in fine
detail. Numerous hotspots exhibit en echelon or otherwise spatially
complex volcanism32,33. However, geochemical and bathymetric
data for other Pacific hotspots are relatively sparse at present.
Nonetheless, further detailed analyses of intra- and inter-hotspot
geochemical variations at these additional locations may allow for
a more comprehensive and detailed mapping of heterogeneities in
the TBL, shedding light on the cause of seismic velocity anomalies

at the base of the mantle and the characteristics of convection and
mixing in the lowermost mantle.
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